Synthesis and Characterization of CdS and ZnS Nanostructured Thin Films for Opto-electronic Energy Applications

Author:

Bairy Raghavendra1,H. Vijeth2,K. Rajesh3,Deshmukh Rohan S.4

Affiliation:

1. Department of Physics, NITTE (Deemed to be University), NMAM Institute of Technology, Nitte – 574110, Karnataka, India

2. Department of Physics, School of Science, Nagaland University, Lumami - 798627, Nagaland, India

3. Department of Physics, St. Joseph Engineering College, Mangaluru (Affiliated to VTU Belagavi) – 575028, Karnataka, India

4. Department of Mechanical Engineering, Walchand College of Engineering, Vishrambag, Sangli 416415, MS, India

Abstract

Since their early discovery, thin films have quickly found industrial uses, including decorative, optical, and energy storage applications. The range of applications for thin film technology has expanded to the point where nearly every industrial sector now uses it to impart specific physical and chemical properties to the surface of bulk materials. The ability to customize film properties by varying the microstructure through the deposition parameters used in a particular deposition technique has recently allowed them to advance from the most basic applications, like protective coatings against wear and corrosion, to the most technologically advanced ones, like microelectronics and biomedicine. Despite such remarkable advancements, the relationship between all phases of the fabrication of metal sulphide thin films such as CdS and ZnS specifically deposition parameters – morphology and characteristics, is not entirely precise. In summary, the characterization of thin films involved several techniques, including X-ray diffraction, UV-Vis spectrophotometry, scanning electron microscopy, energydispersive X-ray diffraction, and transmission electron microscopy. The investigation of nonlinear optical (NLO) parameters was carried out through open aperture (OA) and closed aperture (CA) Z-scan measurements, employing a diode-pumped solid-state continuous-wave laser at 532 nm excitation. The NLO parameters, namely the nonlinear absorption coefficient (β), nonlinear refractive index (n2), and third-order NLO susceptibility (χ(3)) exhibited an increasing trend with higher doping concentrations. These promising outcomes regarding the NLO parameters in nanostructured CdS and ZnS thin films with increasing doping concentrations suggest that these processed films hold significant potential for applications in opto-electronic energy-related technologies.

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3