Affiliation:
1. Department of Physics, Osmania University, Hyderabad-500007, India
2. Department of Physics, Sree Vidyanikethan Engineering College (Autonomous), A. Rangampet -517102, India
Abstract
Background:
Recently, great importance has been devoted to borate glass systems
doped with rare-earth ions because of their unique peculiar properties in the field of
photonics for optical applications.
Objective:
The purpose of the present study is to investigate the effect of concentration of
Sm3+ ions on the luminescence properties of lead fluoroborate glasses through the energy
transfer mechanism.
Materials and Methods:
Samarium doped lead fluoroborate glasses with chemical composition
20PbF2 .10Li2O .5SrO .5ZnO. (60-x) B2O3. xSm2O3 (where x = 0.1, 0.5, 1.0, 1.5 and
2.0 mol %) were prepared by means of melt quenching method. The concentration dependent
luminescence properties were investigated in detail from the optical absorption, photoluminescence
and decay analysis. Judd-Ofelt (J-O) theory was applied to analyze the optical
absorption spectra. The experimental oscillator strengths of absorption bands have been
used to determine the J-O parameters. Using the J-O parameters Ωλ (λ = 2, 4 and 6) and
luminescence data several radiative parameters were obtained.
Results:
From the luminescence spectra, it was noticed that luminescence quenching starts
at higher concentrations of Sm3+ ions (x ≥ 0.5 mol %). The decay curves of 4G5/2 → 6H7/2
transition exhibit a single exponential at lower dopant concentrations (x= 0.1 and 0.5 mol
%) and non-exponential at higher concentrations (x ≥ 1 mol %). The concentration
quenching was attributed to the energy transfer through the cross-relaxation between Sm3+
ions. The non-exponential curves were well fitted to Inokuti-Hirayama model for S = 6, indicating
that the energy transfer between Sm3+ - Sm3+ ions is of dipole-dipole type. The
calculated color coordinates of the as-prepared glasses fall within the reddish-orange region
of the CIE diagram.
Conclusion:
All the experimental results indicate that the 0.5 mol% Sm3+ ions doped
LLSZFB glass can be a possible choice for solid state lighting and display applications.
Publisher
Bentham Science Publishers Ltd.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献