MiR-101 Attenuates Myocardial Infarction-induced Injury by Targeting DDIT4 to Regulate Autophagy

Author:

Li Qiulan1,Gao Yanping1,Zhu Jie1,Jia Qingzhe2ORCID

Affiliation:

1. Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang City, Jiangsu Province, 215600, China

2. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing City, Jiangsu Province, 210029, China

Abstract

Background: Myocardial Infarction (MI), a kind of heart deficiency, is the main cause of death and disability. Autophagy, a metabolic process for the degradation of damaged proteins or organelles, is important for cardiac functions and regulated by several miRNAs including miRNA- 101. The aim of this research was to investigate the effects of miR-101 in myocardial infarctioninduced injury and the related mechanisms. Methods: MI model was induced by ligation of the left coronary artery. The in vitro model was established by hypoxia-induced H9c2 cells (rat myocardial cells). The overexpression of miR-101 was achieved by transfection. The expression of associated proteins was analyzed by Western blotting. The level of miR-101 was analyzed by reverse transcription-polymerase chain reaction (RTPCR). The target genes for miR-101 and the target sites were analyzed by TargetScan. Results: The results showed that miR-101 was decreased in MI mice (P<0.01). Autophagy and apoptosis were increased in MI-induced injury (in vivo) and in hypoxia treated myocardial cells (in vitro) (P<0.01). miR-101 overexpression inhibited the increase of autophagy and apoptosis in mice and myocardial cells (P<0.01). DDIT4 was a target gene of miR-101 and expressed increasingly in MI-induced injury mice and hypoxia treated myocardial cells. miR-101 could negatively regulate the expression of DDIT4. Conclusion: This research suggested that miR-101 attenuated- MI-induced injury by targeting DDIT4 to regulate autophagy, which indicated that miR-101 or DDIT4 may be potential therapeutic targets for heart injury.

Publisher

Bentham Science Publishers Ltd.

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3