Human Olfactory Ensheathing Cell-derived Extracellular Cesicles: miRNA Profile and Neuroprotective Effect

Author:

Tu Yuan-Kun1,Hsueh Yu-Huan1,Huang Hsien-Chang1

Affiliation:

1. Department of Orthopedic Surgery, E-Da Hospitall, I-Shou University, Kaohsiung city,Taiwan

Abstract

Background: Extracellular Vesicle (EV)-based therapy has been identified as a leading alternative approach in several disease models. EV derived from the Olfactory Ensheathing Cell (OEC) has been documented for its strong neuro-regenerative capacity. However, no information on its cargo that may contribute to its therapeutic effect has been available. Objective: To report the first miRNA profile of human OEC (hOEC) -EV, and investigate the neuroprotective effects. Methods: hOEC-EV was isolated and sequenced. We established in vitro experiments to assess the therapeutic potential of hOEC-EVs with respect to insulted neural progenitor cells (NPCs), and the angiogenesis effect. Secondary post-injury insults were imitated using t-BHP-mediated oxidative stress. Results: We noted a strong abundance of hOEC-EV-miRNAs, including hsa-miR148a-3p, hasmiR151a- 3p and several members of let-7 family. The common targets of 15 miRNAs among the top 20 miRNAs were thrombospondin 1 and cyclin dependent kinase 6. We demonstrated that hOEC-EVs promote normal NPC proliferation and differentiation to neuron-like morphologies with prolonged axons. hOEC-EVs protect cells from t-BHP mediated apoptosis. We also found that the migration rate of either NPCs or endothelial cells significantly improved with hOEC-EVs. Furthermore, in vitro tube formation assays indicated that angiogenesis, an important process for tissue repair, was significantly enhanced in human umbilical vein endothelial cells exposed to hOEC-EVs. Conclusion: Our results revealed that hOEC-EVs exert neuroprotective effects by protecting cells from apoptosis and promoting in vitro biological processes that are important to neural tissue repair, including neural cell proliferation, axonal growth, and cell migration, in addition to enhancing angiogenesis.

Funder

Ministry of Science and Technology

Publisher

Bentham Science Publishers Ltd.

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3