Electro-acupuncture Promotes Angiogenesis via Exosomal miR-210 in the Hypoxia-induced HUVECs Mediated HIF-1α/VEGF/Notch 1 Signal Pathway

Author:

Peng Yong-Jun1,Xu Shu-Ying1,Ni Si-Ming1,Zeng Chun-Li1

Affiliation:

1. Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China

Abstract

Background: Acupuncture has been wildly applied for cerebral ischemia treatment in China for thousands of years, while the specific mechanism remains uncertain. Recently, many studies have shown that acupuncture promotes angiogenesis after ischemia occurs. Here, we examined the effect of electro-acupuncture (EA) exosomes on angiogenesis in hypoxia-induced human umbilical vein endothelial cells (HUVECs). Objective: To investigate whether EA exosomal miR-210 promotes angiogenesis in the hypoxiainduced HUVECs via the HIF-1α/VEGF/Notch 1 signal pathway. Methods: The middle cerebral artery occlusion (MCAO) model was established and treated with EA therapy. Then, exosomes were identified and isolated from rats' plasma in the MCAO+EA group by transmission electron microscopy (TEM), surface markers expressions, and PKH26 reagent. MiR- 210 mimic, miR-210 inhibitor, and HIF-1α were transfected. Flow cytometry, CCK-8 assay, and Transwell assay were conducted to assess the migration, apoptosis, and proliferation of each group of cells. Western blot and quantitative PCR were performed to detect the CD34, HIF-1α, VEGF, Notch 1, and miR-210 expression levels in each group. Results: MiR-210 was significantly upregulated in exosomes of the MCAO plasma, and further enhanced by EA therapy. EA-EXOs and miR-210 mimic inhibited cell apoptosis, promoted cell proliferation and cell migration in hypoxia-induced HUVECs. However, the miR-210 inhibitor reversed the proliferation and migration number induced by EA-EXOs. Besides, EA-EXOs and miR- 210 mimic further enhanced those HIF-1α, VEGF, and Notch 1 levels compared to the hypoxia treatment only. Silencing HIF-1α or miR-210 reversed the high expressions of those three angiogenic factors induced by hypoxia and EA-EXO. qPCR showed similar trends with their relative mRNAs. To analyze these associations quantificationally, Spearman's rank correlation coefficient was calculated. As revealed by results, the expression of proteins and mRNA were highly correlative with each other. Conclusions: These results indicated that EA-EXO miR-210 promotes angiogenesis in hypoxia conditions via HIF-1α/VEGF/Notch 1 signal pathway.

Funder

National Natural Science Foundation of China

Peak Academic Talents of Jiangsu Hospital of Traditional Chinese Medicine

Publisher

Bentham Science Publishers Ltd.

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3