Propofol Rescued Astrocytes from LPS-induced Inflammatory Response via Blocking LncRNA-MEG3/NF-κB Axis

Author:

Xia Pingping1,Ye Zhi1,Zhang Fan1,Wang Zhihua2,Sun Bei1,Huang Yan1,Chen Cheng1,Hu Jie1,Li Longyan1

Affiliation:

1. Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China

2. Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan Province, China

Abstract

Objective:Evidences demonstrate that propofol attenuates neuro-inflammation following brain ischemia. Moreover, LncRNA-MEG3 has been identified as an independent prognostic marker for ischemic stroke patients, and found to correlate to cerebral ischemia in animal models. Therefore, the current study explored the role of propofol in lipopolysaccharide (LPS)-mediated inflammation in cultured astrocytes, along with the molecular mechanism involved in LncRNAMEG3/ NF-κB axis.Methods:The primary cultured astrocytes isolated from rats were used to establish an inflammatory model, which were treated with LPS. Propofol was administrated to the primary cultured astrocytes during LPS treatment. The effects of propofol on pro-inflammatory cytokines and the LncRNAMEG3/ NF-κB pathway were detected by ELISA, qRT-PCR and Western Blot assay, respectively. Then, dual-luciferase assay, chromatin immunoprecipitation and RNA immunoprecipitation were used to determine the interaction between LncRNA-MEG3 and NF-κB.Results:Our study found propofol to significantly reduce LncRNA-MEG3 expression, which was elevated in LPS-stimulated astrocytes. Moreover, both propofol and LncRNA-MEG3 knockdown remarkably alleviated LPS-induced cytotoxicity by suppressing expressions and release of proinflammatory cytokines. Loss of LncRNA-MEG3 notably suppressed the NF-κB activity and its phosphorylated activation. Additionally, it was also observed that LncRNA-MEG3 could bind nuclear p65/p50, and promote the binding of NF-κB to IL-6 and TNF-α promoters in the nucleus, subsequently stimulating the production of inflammatory cytokines in LPS-treated astrocytes. Furthermore, a specific inhibitor of NF-κB, PDTC, rescued astrocytes from LPS exposure without affecting the LncRNA-MEG3 expression.Conclusion:These findings demonstrate that LncRNA-MEG3 acts as a positive regulator of NF-κB, mediating the neuroprotection of propofol in LPS-triggered astrocytes injury.

Funder

National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation of China

Hainan Provincial Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3