CORM-3 Regulates Microglia Activity, Prevents Neuronal Injury, and Improves Memory Function During Radiation-induced Brain Injury

Author:

Lu Kui1ORCID,Wu Wen-Jun1,Zhang Cheng2,Zhu Yu-Liang3,Zhong Jian-Qiang4,Li Jie4

Affiliation:

1. Department of Neurology, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, China

2. Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China

3. Department of Radiation Oncology, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, China

4. Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangdong 511300, China

Abstract

Objectives: This study aims to explore in detail, the mechanism of the carbon monoxide releasing molecule-3 (CORM-3) in regulating the activity of microglia (MG) in the treatment of radiation brain injury (RBI). Methods: The brain injury models of BV2 cells and Balb/C mice were established and randomly divided into three groups: the normal control group (CON), the single radiation group (RAD), and the radiation plus CORM-3 intervention group (RAD+CORM). Immunofluorescence was used to observe the effects on activation of the MG. The expressions of inflammatory factors, such as intercellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS), were detected by Western blot. Neuron apoptosis and regeneration in the radiation brain injury (RBI) model were detected by neuronal nuclear antigen (NeuN)+TUNEL and NeuN+BrdU double staining. A Morris water maze was used to assess the spatial learning and memory of the mice. Results: Within 48 h after radiation, CORM-3 inhibited activation of the MG, blocked the phosphorylation of P38, and increased the expression of ICAM-1 and iNOS. Therefore, CORM-3 might alleviate MG-mediated neuronal apoptosis and promote neural regeneration in the subgranular zone (SGZ) of the dentate gyrus of the hippocampus. CORM-3 could increase the swimming distance and platform-stay time of the mice in the target platform quadrant after radiation. Conclusion: CORM-3 could effectively improve the inflammatory response induced by activation of the MG, reduce neuronal apoptosis, promote neural regeneration, and improve the learning and memory performance of mice after radiation.

Funder

Zhongshan Municipal Science and Technology Project

Guangdong Medical Research Fund Project

China Postdoctoral Science Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3