CD31+ Circulating Angiogenic Cell Number and Subtypes are Reduced in Individuals with Chronic Stroke

Author:

Landers-Ramos Rian Q.1,Kim Katherine I.2,Hickey Brent1,Ivey Frederick M.3,Hafer-Macko Charlene E.3,Macko Richard F.3,Ryan Alice S.3,Prior Steven J.3ORCID

Affiliation:

1. Department of Kinesiology, Towson University, Towson, MD, United States

2. Department of Kinesiology, University of Maryland School of Public Health, College Park, MD, United States

3. Geriatric Research Education and Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, MD, United States

Abstract

Background and Purpose: Reduced number and function of CD31+ circulating angiogenic cells (CACs) may explain vascular complications associated with the chronic phase stroke. The purpose of this study was to quantify CD31+ CAC paracrine function, total number and number of various subtypes of CD31+ CACs in individuals with chronic stroke compared with controls. Methods: Peripheral blood mononuclear cells were isolated from chronic stroke participants and controls. CD31+ cells were quantified by flow cytometry, as was co-expression of CD31 in combination with CD14, CD3, CD11b, or CD34. Immunomagnetically selected CD31+ cells were cultured, and conditioned medium was used in a capillary-like network assay. Results: Significantly lower levels of CD31+ CACs were found in stroke participants compared with controls (-24%; P=0.04). Additionally, CD31+/CD14+, CD31+/CD11b+ and CD31+/CD3+ cells were significantly lower in the chronic stroke group compared with controls (-45%, P=0.02; -47%, P=0.02 and -32%, P=0.03, respectively). There was no group effect on CD31+ CAC conditioned media-mediated capillary-like network formation. Conclusion: CD31+ CACs and subtypes may serve as potential therapeutic targets in chronic stroke recovery.

Funder

Department of VA Merit Review Award

NIH and the American Federation for Aging Research

MERCE, VA Senior Research Career Scientist Award

NIH T32

Publisher

Bentham Science Publishers Ltd.

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3