Exploration of Fungal Lipase as Direct Target of Eugenol through Spectroscopic Techniques

Author:

Naz Farheen1,Anis Haider2,Hasan Ziaul1,Islam Asimul2,Khan Luqman A.1

Affiliation:

1. Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India

2. Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India

Abstract

Background:Fungal lipase dependent processes are important for their pathogenicity. Lipases can therefore be explored as direct target of promising herbal antifungals.Objective:We explored Aspergillus niger lipase as a direct target of eugenol through spectroscopic techniques and compare results with Bovine Serum Albumin and lysozyme to comment on selectivity of eugenol towards lipase.Methods:In vitro activity assays of lipase are used to determine concentration ranges. UV-Visible, Fluorescence and Circular dichroism spectroscopy were employed to determine binding constant, stoichiometric binding sites and structural changes in Lipase, BSA and lysozyme following incubation with varying concentrations of eugenol.Results:In activity assays 50% inhibition of lipase was obtained at 0.913 mmoles/litre eugenol. UV-vis spectroscopy shows formation of lipase-eugenol, Bovine Serum Albumin-eugenol and lysozyme-eugenol complex well below this concentration of eugenol. Eugenol binding caused blue shift with Bovine Serum Albumin and lysozyme suggestive of compaction, and red shift with lipase. Negative ellipticity decreased with lipase but increased with Bovine Serum Albumineugenol and lysozyme-eugenol complexes suggesting loss of helical structure for lipase and compaction for Bovine Serum Albumin and lysozyme. Binding of eugenol to lipase was strong (Ka= 4.7 x 106 M-1) as compared to Bovine Serum Albumin and lysozyme. The number of stoichiometric eugenol binding sites on lipase was found to be 2 as compared to 1.37 (Bovine Serum Albumin) and 0.32 (lysozyme). Docking results also suggest strong binding of eugenol with lipase followed by Bovine Serum Albumin and lysozyme.Conclusion:Eugenol is found to be effective inhibitor and disruptor of secondary and tertiary structure of lipase, whereas its binding to Bovine Serum Albumin and lysozyme is found to be weak and less disruptive of structures suggesting selectivity of eugenol towards lipase.

Funder

University Grants Commission

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3