Heat-Shock Triggers Inverted Induction of Hypo-S-Nitrosylation and Hyper-O-GlcNAcylation

Author:

Do Su-Il1,Kim Min-Jae1,Ryu In-Hyun1

Affiliation:

1. Department of Life Science, Laboratory of Functional Glycomics, Ajou University, San 5, Wonchon-dong, Suwon 443- 749, Korea

Abstract

Introduction: Protein S-nitrosylation (SNO) and O-GlcNAcylation are important posttranslational modifications. The biological connection between SNO and O-GlcNAcylation is not clear. Objective: We aim to identify the crosstalk between SNO and O-GlcNAcylation during heat-shock. Methods: Ex vivo heat-shock on mouse tissues together with in vitro heat-shock on culture cells was performed and global levels of SNO and O-GlcNAcylation were analyzed with Biotin-switch assay (BSA) and RL2 immunoblots. Results: Heat-shock induces hypo-SNO in parallel with hyper-O-GlcNAcylation. Inverted induction of hypo-SNO and hyper-O-GlcNAcylation is globally progressed in a time-dependent manner. Discussion: Moreover, heat-shock ubiquitously facilitates S-denitrosylation (SdeNO) of endogenous SNO-proteins including SNO-OGT, SNO-Hsp70, SNO-Hsp90, SNO-Akt, and SNOactin. Particularly, SdeNO of SNO-OGT leads to enhanced OGT activity. Conclusion: These findings provide mechanistic evidence that heat-shock triggers SdeNO of SNOOGT by which OGT activity is up-regulated, resulting in hyper-O-GlcNAcylation.

Funder

Intramural Ajou Research, Korea Grants

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3