Affiliation:
1. Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United
Kingdom
Abstract
Background:
Age-related macular degeneration (AMD) can be characterised by
degeneration of retinal pigment epithelial (RPE) cells and the accumulation, in retinal drusen
deposits, of amyloid beta-peptides proteolytically derived, by secretases, from the amyloid precursor
protein (APP). Ultraviolet (UV) light exposure is a risk factor for the development of AMD.
Objectives:
In the current study, we investigated whether APP and/or its proteolysis are linked to the
UVA resistance or proliferation of ARPE-19 human RPE cells.
Methods:
Cell viability was determined, following UVA exposure, with prior small interfering
RNA-mediated APP depletion or secretase inhibitor treatments. APP levels/proteolysis were
analysed by immunoblotting. Cells were also grown in the presence/absence of secretase inhibitors
to assess their effects on longer-term culture growth. Finally, the effects of APP proteolytic
fragments on ARPE-19 cell proliferation were monitored following co-culture with human
embryonic kidney cells stably over-expressing these fragments.
Results:
Endogenous APP was depleted following UVA irradiation and β-secretase, but not α-
secretase, and the processing of the protein was reduced. Experimental APP depletion or γ-secretase
(but not α- or β-secretase) inhibition ablated the detrimental effect of UVA on cell viability. In
contrast, α-secretase, and possibly γ-secretase but not β-secretase activity, appeared to promote the
longer-term proliferation of ARPE-19 cells in the absence of UVA irradiation.
Conclusions:
There are clear but differential links between APP expression/proteolysis and the
proliferation and UVA resistance of ARPE-19 cells indicating that the protein should be
investigated further in relation to the identification of possible drug targets for the treatment of
AMD.
Publisher
Bentham Science Publishers Ltd.
Subject
Biochemistry,General Medicine,Structural Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献