Affiliation:
1. Department of Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabanci
University, Istanbul, Turkey
Abstract
Background:
In plants, heterotrimeric G-protein (Gγ) subunits are diverse, and they have
structural plasticity to provide functional selectivity to the heterotrimer. Although the Gβ and Gγ
subunits dimerize to function in the signaling pathway, the interaction mechanism of various Gγ
subunits with the Gβ subunit partners is still elusive.
Objective:
To better understand the interaction mechanism, one approach is to separate the subunits
for the re-assembly in vitro. Hence, developing a reliable method for achieving the efficient
production and purification of these proteins has become necessary.
Method:
In this study, Gγ1 and Gγ2 proteins from Oryza sativa and Arabidopsis thaliana were
successfully identified, cloned, expressed in bacteria, and purified as recombinant proteins with the
fusion tags. Highly expressed recombinant Gγ subunits in E. coli were digested by proteases, which
were also produced in the presented study.
Results:
Preliminary structural characterization studies without the Gβ partners showed that Gγ1
proteins have disordered structures with coiled-coil, α-helix extensions, and loops, whereas the Gγ2
protein has a more dominant β-sheet and turns structure. Finally, computational analyses performed
on Gγ genes have laid the foundation of new targets for biotechnological purposes.
Conclusion:
The proposed optimized expression and purification protocol can contribute to
investigations on the Gβγ binding mechanism in plant G-protein signaling. The investigations on
selective binding are critical to shed light on the role(s) of different plant Gγ subunit types in
biological processes.
Publisher
Bentham Science Publishers Ltd.
Subject
Biochemistry,General Medicine,Structural Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献