Insights into the Dynamic Fluctuations of the Protein HPV16 E1 and Identification of Motifs by Using Elastic Network Modeling

Author:

Malik Rabbiah1ORCID,Fazal Sahar1

Affiliation:

1. Faculty of Biosciences, Capital University of Science and Technology, Islamabad, Pakistan

Abstract

Background: Cancers of cervix, head and neck regions have been found to be associated with Human Papilloma Virus (HPV) infection. E1 protein makes an important papillomavirus replication factor. Among the ORFs of papillomaviruses, the most conserved sequence is that of the E1 ORF. It is the viral helicase with being a member of class of ATPases associated with diverse cellular activities (AAA+) helicases. The interactions of E1 with human DNA and proteins occurs in the presence of short linear peptide motifs on E1 identical to those on human proteins. Methods: Different Motifs were identified on HPV16 E1 by using ELMs. Elastic network models were generated by using 3D structures of E1. Their dynamic fluctuations were analyzed on the basis of B factors, correlation analysis and deformation energies. Results: 3 motifs were identified on E1 which can interact with Cdk and Cyclin domains of human proteins. 11 motifs identified on E1 have their CDs of Pkinase on human proteins. LIG_MYND_2 has been identified as involved in stabilizing interaction of E1 with Hsp40 and Hsp70. These motifs and amino acids comprising these motifs play a major role in maintaining interactions with human proteins, ultimately causing infections leading to cancers. Conclusion: Our study identified various motifs on E1 which interact with specific counter domains found in human proteins, already reported having the interactions with E1. We also validated the involvement of these specific motifs containing regions of E1 by modeling elastic networks of E1. These motif involving interactions could be used as drug targets.

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3