Purification of Classical Swine Fever Virus E2 Subunit Vaccines Based on High Affinity Peptide Ligand

Author:

Wang Fangyu1,Yu Qiuying2,Hu Man1,Xing Guangxu1,Zhao Dong1,Zhang Gaiping1

Affiliation:

1. Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China

2. College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China

Abstract

Background: The purification of expressed proteins is the most critical part of subunit-- vaccine production. Protein-purification methods such as affinity chromatography and ion exchange still have the shortcomings of being time consuming and complicated. With the rapid development of computational molecular-simulation technology, structure-based peptide-ligand design has become feasible. Objection: We aimed to apply molecular docking for a peptide ligand designed for classical swine fever virus (CSFV) E2 purification. Methods: Computational-derived peptides were synthesized, and the in vitro binding interaction with E2 was investigated. The effects of purification on E2 were also evaluated. Results: The best peptide recognizing E2 was P6, which had a sequence of KKFYWRYWEH. Based on kinetic surface plasmon resonance (SPR) analysis, the apparent affinity constant of P6 was found to be 148 nM. Importantly, P6 showed suitable binding affinity and specificity for E2 purification from transgenic rice seeds. Evaluation of immune antibodies in mice showed that the antibody- blocking rate on day 42 after inoculation reached 86.18% and 90.68%. Conclusion: The computational-designed peptide in this study has high sensitivity and selectivity and is thus useful for the purification of CSFV E2. The novel method of design provided a broad platform and powerful tool for protein-peptide screening, as well as new insights into CSFV vaccine design.

Funder

National Key Research and Development Program of China

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3