An Indicating Role of Antioxidant System Enzymes at the Stage of Active Structural Anomalies Formation in Karelian Birch (Betula pendula Roth var. carelica (Mercl.) Hämet-Ahti)

Author:

Nikerova Kseniya Mihajlovna1ORCID,Galibina Natalia Alekseevna1ORCID,Sofronova Irina Nikolaevna1,Borodina Marina Nikolaevna1,Moshchenskaya Yuliya Leonidovna1ORCID,Tarelkina Tatiana Vladimirovna1ORCID,Klimova Anna Vladimirovna1,Novitskaya Ludmila Lyudvigovna1ORCID

Affiliation:

1. Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science (FRI KarRC RAS), Karelian Research Centre, 11 Pushkinskaya St., Petrozavodsk, Karelia, 185910, Russia

Abstract

Introduction: A complex study of the antioxidant system enzymes (AOS) is an important subject of biochemical research; changes in the activity of these enzymes can be used as a biochemical marker of various processes in plants. At the same time, practically little attention has been paid to describing the regularities of these enzymatic reactions in different wood formation processes, such as xylogenesis. This article discusses the outcomes of different behaviors of AOS enzymes, which are involved in both the redistribution of the ROS balance and phenolic compounds at the early stages of wood formation in young plants of silver birch (Betula pendula Roth) with straight-grained wood and Karelian birch (Betula pendula Roth var. carelica (Merckl.) Hamet-Ahti) with non-figured and figured parts within the single trunk. Background: Spectrophotometric determination of AOS enzymes’ activity can be used as a biochemical marker in the different wood formation processes, including xylogenesis. In this study, we studied structural anomalies of the woody plant trunk of Karelian birch (Betula pendula Roth var. carelica (Merckl.) Hamet- Ahti). Objective: This study aimed to study AOS enzymes’ activity in 12-year-old plants of silver birch (Betula pendula Roth) with straight-grained wood and Karelian birch (Betula pendula Roth var. carelica (Merckl.) Hamet-Ahti) with non-figured and figured parts within the single trunk. Methods: Plant tissues were ground in liquid nitrogen to a uniform mass and homogenized at 4°C in the buffer containing 50 mM HEPES (pH 7.5), 1 mM EDTA, 1 mM EGTA, 3 mM DTT, 5 mM MgCl2, and 0.5 mM PMSF. After 20 min extraction, the homogenate was centrifuged at 10000 g for 20 min (MPW-351R, Poland). The sediment was washed in the buffer thrice. The pooled supernatant and sediment were dialyzed at 4°C for 18-20 h against a tenfold diluted homogenization buffer. The enzymes' activity was determined spectrophotometrically (Spectrophotometer SF-2000, OKB Spectr, Russia). Proteins in the extracts were quantified by the method of Bradford. Results: We observed different behaviors of the studied enzymes involved in both the redistribution of the ROS balance and phenolic compounds with subsequent lignification even at the early stages of wood formation in young plants and even in different trunk parts within a tree, which was consistent with results obtained earlier on adult plants. High SOD activity in the phloem compared to the activity in the xylem was accompanied by higher CAT activity. The POD/SOD ratio was significantly higher in the figured trunk parts in Karelian birch compared to other variants in the xylem and higher in Karelian birch plants compared to plants of common birch in the phloem. The CAT/POD ratio was significantly higher in plants with no signs of anomalies. The high POD and PPO activity in the xylem of figured trunk parts and in the phloem of figured and non-figured trunk parts of B. pendula var. carelica can be associated with the high activity of apoplast invertase. Conclusion: The study showed that at the stage of active formation of structural anomalies in the figured trunk parts in young plants of Karelian birch, hydrogen peroxide utilization occurred mainly due to increased POD activity. An increase in PPO activity in the trunk of figured plants could also be considered an indicator of the formation of structural anomalies. At the same time, in areas with developing abnormal wood, the POD/SOD ratio increased, and the CAT/POD ratio decreased, indicating a fine-tuning of the balance between superoxide radical and hydrogen peroxide, which, when changed, might regulate the rearrangement of xylogenesis towards proliferation in relation to differentiation.

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3