Effect of Glyoxal Modification on a Critical Arginine Residue (Arg-31α) of Hemoglobin: Physiological Implications of Advanced Glycated end Product an in vitro Study

Author:

Banerjee Sauradipta1ORCID

Affiliation:

1. Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, Kolkata 700009, India

Abstract

Background: Non-enzymatic protein glycation is involved in structure and stability changes that impair protein functionality, resulting in several human diseases, such as diabetes and amyloidotic neuropathies (Alzheimer’s disease, Parkinson’s disease and Andrade’s syndrome). Glyoxal, an endogenous reactive oxoaldehyde, increases in diabetes and reacts with several proteins to form advanced glycation end products through Maillard-like reaction. Objective: Human hemoglobin, the most abundant protein in blood cells is subjected to nonenzymatic modification by reactive oxoaldehydes in diabetic condition. In the present study, the effect of a low concentration of glyoxal (5 μM) on hemoglobin (10 μM) has been investigated following a period of 30 days incubation in vitro. Methods: Different techniques, mostly biophysical and spectroscopic (e.g. circular dichroism, differential scanning calorimetric study, dynamic light scattering, mass spectrometry, etc.) were used to study glyoxal-induced changes of hemoglobin. Results: Glyoxal-treated hemoglobin exhibits decreased absorbance around 280 nm, decreased fluorescence and reduced surface hydrophobicity compared to normal hemoglobin. Glyoxal treatment enhances the stability of hemoglobin and lowers its susceptibility to thermal aggregation compared to control hemoglobin as seen by different studies. Finally, peptide mass fingerprinting study showed glyoxal to modify an arginine residue of α-chain of hemoglobin (Arg-31α) to hydroimidazolone. Conclusion: Increased level of glyoxal in diabetes mellitus as well as its high reactivity may cause modifications of the heme protein. Thus, considering the significance of glyoxal-induced protein modification under physiological conditions, the observation appears clinically relevant in terms of understanding hydroimidazolone-mediated protein modification under in vivo conditions.

Funder

University Grants Commission

Department of Science and Technology

Council of Scientific and Industrial Research

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3