ChrII-Encoded DNA Helicase: A Preliminary Study

Author:

Song Xiaoyan1,Tang Bailu21,Chen Zhongyuan2,Xia Hu23,Wang Ronghua2

Affiliation:

1. State Key Laboratory of Microbiology Technology, Shandong University, Qingdao, China

2. Changde Research Center for Agricultural Biomacromolecule, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China

3. Dahu Aquaculture Company Limited, Hunan Changde, China

Abstract

Background: DNA helicases are unwinding enzymes that are essential for many cellular processes. Research has suggested that both the model microorganisms of a single chromosome and the model microorganisms of multiple chromosomes adopt DNA helicases encoded by chromosome I. Therefore, studying DNA helicases encoded by chromosome II may lay some foundation for understanding nucleic acid metabolism processes. Objective: To prove the existence of DNA helicase encoded by chromosome II and to reveal its difference compared to DNA helicase encoded by chromosome I. Methods: The DNA helicases of Pseudoalteromonas spongiae JCM 12884T and Pseudoalteromonas tunicata DSM 14096T were analyzed by sequence alignment and phylogenetic relationships with other known DNA helicases. Then, proteins of P. spongiae JCM 12884T and P. tunicata DSM 14096T were obtained by heterologous expression. N-terminal sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were performed to confirm the form of proteins. A fluorescence resonance energy transfer (FRET) assay was used to measure the activity of helicases. Results: DnaB-pspo and DnaB-ptun belong to the same family, the PRK08840 superfamily, and form a branch with helicases encoded by chromosome I. YwqA-pspo and YwqA-ptun have similar domains and form another branch with helicases encoded by chromosome II. All four helicases have DNA unwinding activity. YwqA is more efficient than DnaB for DNA unwinding, especially YwqA-pspo, which is encoded by bidirectional replication chromosome II. Conclusion: This is the first study to show that the existence of a DNA helicase encoded by chromosome II, and DNA helicase encoded by chromosome II is more efficient than chromosome I for DNA unwinding.

Funder

Natural Science Foundation of Hunan Province

Changde Research Center for Agricultural Biomacromolecule

Innovation Team of Microbial Technology in Hunan University of Arts and Science

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3