Phosphorylated and O-GlcNAc Modified IRS-1 (Ser1101) and -2 (Ser1149) Contribute to Human Diabetes Type II

Author:

Kaleem Afshan1ORCID,Javed Sabahat1,Rehman Nayab1,Abdullah Roheena1ORCID,Iqtedar Mehwish1ORCID,Aftab Mohammad Nauman2ORCID,Hoessli Daniel C.3,Haq Ikram-Ul2

Affiliation:

1. Department of Biotechnology, Lahore College for Women University, Lahore, Punjab 54000, Pakistan

2. Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan

3. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan

Abstract

Background: The prevalence of the chronic metabolic disorder Type 2 diabetes mellitus (T2DM) is increasing steadily, and has even turned into an epidemic in some countries. T2DM results from defective responses to insulin and obesity is a major factor behind insulin resistance in T2DM. Insulin receptor substrate (IRS) proteins are adaptor proteins in the insulin receptor signalling pathway. The insulin signalling is controlled through tyrosine phosphorylation of IRS-1 and IRS-2, and dysregulation of IRS proteins signalling may lead to glucose intolerance and eventually insulin resistance. Objective: In this work, we suggest that both glycosylation (O-GlcNAc modification) and phosphorylation of IRS-1 and -2 are involved in the pathogenesis of T2DM. Methods: Phosphorylation and O-GlcNAc modifications (Ser1101 in IRS-1 and Ser1149 in IRS-2) proteins were determined experimentally by sandwich ELISA with specific antibodies and with bioinformatics tools. Results: When IRS-1 (on Ser1101) and IRS-2 (Ser1149) become glycosylated following an increase in UDP-GlcNAc pools, it may contribute to insulin resistance. Whereas when the same (IRS-1 on Ser1101 and IRS-2 on Ser1149) are phosphorylated, the insulin signalling is inhibited. Discussion: In this work OGlcNAc-modified proteins were specifically detected using O-Glc- NAc-specific antibodies, suggesting that elevated levels of O-GlcNAc-modified proteins are found, independently of their possible involvement in Advanced Glycation End products (AGEs). Conclusion: This study suggests a mechanism, which is controlled by posttranslational modifications, and may contribute to the pathogenesis of type II diabetes.

Funder

HEC

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3