EGLLGDVF: A Novel Peptide from Green Mussel Perna viridis Foot Exerts Stability and Anti-inflammatory Effects on LPS-Stimulated RAW264.7 Cells

Author:

Joshi Ila1ORCID,Nazeer Rasool Abdul1ORCID

Affiliation:

1. Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, India

Abstract

Background: Green mussel Perna viridis is a bivalve mollusc which is native to the Indian coast and can be found in the Indo-Pacific as well as Asia-Pacific regions. This study evaluates the P. viridis foot (PVF) as a source of an anti-inflammatory peptide. Objective: To characterize and evaluate the possibility of pro-inflammatory cytokines, nitric oxide (NO) as well as cyclooxygenase (COX)-2 reduction in RAW264.7 cells and to analyze functional aspects of the derived peptide from PVF. Materials and Methods: The PVF was hydrolysed with different enzymes and the antiinflammatory activity of hour hydrolysates were evaluated using HRBC Membrane Stabilization (HMS) against hypotonicity induced haemolysis and Albumin Denaturation (AD) inhibition from induced heat assays. Later, the active hour hydrolysate was separated by ultrafiltration and purified using Size-Exclusion Chromatography (SEC). Further, the purified peptide’s sequence was identified using LC-MS/MS and functional properties were determined. Also, the peptide was observed for its anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 cells for pro-inflammatory cytokines, NO production and COX-2 activation. Results: Among the four enzymes 6th hour alcalase hydrolysate exhibited potent anti-inflammatory activity and was sequentially fractioned with molecular weight cut-offs; further active fraction (30- 10 kDa) was purified. The active peak-II was identified as EGLLGDVF (849.435 Da) and exhibited decent functional aspects. The peptide successfully reduced the production of pro-inflammatory cytokines, NO and COX-2 activation; and down-regulated the iNOS and COX-2 protein expression in LPS-stimulated RAW264.7 cells. Conclusion: Our study indicates that EGLLGDVF derived from PVF has potential antiinflammatory applications applicable in food and pharmaceutical industries.

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3