Denaturant Induced Equilibrium Unfolding and Conformational Transitional Studies of Germinated Fenugreek β-Amylase Revealed Molten Globule like State at Low pH

Author:

Agrawal Dinesh Chand1,Yadav Anjali1,Khan Mohd. Asim2,Kundu Suman2,Kayastha Arvind M.1ORCID

Affiliation:

1. School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India

2. Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India

Abstract

Background: β-Amylase (EC 3.2.1.2) is a maltogenic enzyme, which releases β-maltose from the non-reducing end of the substrates. The enzyme plays important roles for the production of vaccine, maltiol and maltose rich syrups. Apart from these applications the enzyme protects cells from abiotic as well as oxidative damage. The enzyme is βwell characterized in βplants and microbes and crystal structures of β-amylases βhave been βobtained from sweet potato, soybean and Bacillus cereus. Objective: Find out correlation between structural and functional stability induced by change in pH, temperature and chaotropes. Methods: Activity, intrinsic fluorescence, extrinsic fluorescence, near- and far- ultraviolet circular dichroism spectroscopic measurements were performed. Results: Peaks about 208 nm and 222 nm obtained by near-ultraviolet circular dichroism correspond to α-helix whereas peak at 215 nm shows presence of β-sheet. At pH 2.0, absence of tertiary structures, exposed of hydrophobic regions and presence of substantial secondary structures, revealed the existence of molten globule like state. Temperature induced denaturation studies showed that the enzyme was stable up to 75ºC and the process was found to be irreversible in nature. Chaotropes dependent equilibrium unfolding studies revealed that at low concentration of chaotropes, ellipticity and intrinsic fluorescence βintensity were βdecreased βwhereas βenzymatic activity remained unchanged, which revealed fenugreek β-amylase is multi-domains enzyme and catalytic βdomain βis more βstable compare to non-catalytic domain. Moreover, the transition was sigmoidal and non-coincidental. Conclusion: Results indicate the probable existence of intermediate states that might perform significant role in physiological process and biotechnological applications.

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3