A Cassava CPRF-2-like bZIP Transcription Factor Showed Increased Transcript Levels during Light Treatment

Author:

Pontes Lígia Cristine Gonçalves1ORCID,Cardoso Cristina Michiko Yokoyama1ORCID,Callegari Daihany Moraes1ORCID,dos Reis Sávio Pinho1ORCID,do Socorro Alves Namias Érika1ORCID,da Cunha Ferreira Solange1ORCID,de Souza Cláudia Regina Batista1ORCID

Affiliation:

1. Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil

Abstract

Background: bZIP proteins participate in the regulation of gene expression, playing crucial roles in various biological processes in plants, including response to environmental changes. Luminosity is an environmental factor of extreme importance for plant metabolism, acting as a regulator of its growth and development. Despite advances in the identification of bZIP proteins in several plant species, studies on these transcription factors in cassava are lacking. Cassava (Manihot esculenta Crantz) is one of the most important food crops in tropical and subtropical regions, mainly in developing countries, where its storage root is a major source of calories for low-income people. Objectives: Our main aim was the isolation of a cDNA sequence encoding a bZIP protein from cassava (MebZIP) as well as the in silico characterization of its nucleotide and deduced amino acid sequences. In addition, we evaluated the expression pattern of the MebZIP gene in response to light, and its possible relationship with regulation of the chalcone synthase (MeCHS) gene. Method: RT-PCR and 3’ and 5’ RACE assays were used to isolate the full-length cDNA sequence of MebZIP. Bioinformatics tools were used to characterize the nucleotide and amino acid sequences of MebZIP. Semiquantitative RT-PCR assays were used to evaluate the expression levels of MebZIP and MeCHS genes. Results: We isolated the full-length cDNA sequence of MebZIP with a 1320-bp ORF encoding a deduced protein with a predicted molecular weight and isoelectric point of 47 kDa and 5.85, respectively. Comparative analyses with GenBank sequences showed high identity of MebZIP with bZIP CPRF-2 of Hevea brasiliensis (XP_021650934) and Petroselinum crispum (Q99090.2). Besides the basic region and leucine zipper domains, MebZIP contains putative conserved domains (D1- D4), found in parsley CPRF-2 and bZIP proteins closely related to this protein. Since CPRF proteins are known for their function in regulation of the CHS gene by light, we evaluated the expression levels of the MebZIP gene and the possible target gene to be regulated by MebZIP (the MeCHS gene) in cassava under light conditions. Semi-quantitative RT-PCR assays revealed that MebZIP transcription increased in response to white light, with maximum expression levels at 6 h of light exposure. On the other hand, the expression levels of the MeCHS gene were statistically constant in all samples, indicating that they were not influenced by the experimental conditions used here. Conclusion: The putative MebZIP protein identified in this work contains the conserved domains (bZIP, D1-D4) that indicate its functionality, thus allowing it to be considered a new member of the bZIP transcription factor CPRF-2 family. The expression levels of the MebZIP gene increased during white light exposure, indicating a potential function in light-response in cassava.

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3