The Effect of N52R Mutation at the SPN-ARR Interface on the Conformational Dynamics of SHANK3

Author:

Almaadani Hiba K.1,Mattaparthi Venkata Satish Kumar1ORCID

Affiliation:

1. Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur-784 028, Assam, India

Abstract

Background:: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition. The genetic basis of ASD involves numerous loci converging on neural pathways, particularly affecting excitatory synapses. SHANK3, an essential protein in the post-synaptic neurons, has been implicated in ASD, with mutations affecting its N-terminal, including the SPN domain. Objective: This study aims to investigate the impact of the N52R mutation on SHANK3 and assess the dynamics, stability, flexibility, and compactness of the N52R mutant compared to SHANK3 WT. Methods: Molecular dynamics simulations were conducted to investigate the structural dynamics of SHANK3 WT and the N52R mutant. The simulations involved heating dynamics, density equilibrium, and production dynamics. The trajectories were analyzed for RMSD, RMSF, Rg, hydrogen bond analysis, and secondary structure. Results: The simulations revealed that the N52R mutant disrupts the stability and folding of SHANK3, affecting intramolecular contacts between SPN and ARR. This disruption opens up the distance between SPN and ARR domains, potentially influencing the protein's interactions with partners, including αCaMKII and α-Fodrin. The altered conformation of the SPN-ARR tandem in the N52R mutant suggests a potential impact on dendritic spine shape and synaptic plasticity. Conclusion: The findings shed light on the structural consequences of the N52R mutation in SHANK3, emphasizing its role in influencing intramolecular interactions and potential effects on synaptic function. Understanding these molecular dynamics contributes to unraveling the intricate relationship between genetic variations in SHANK3 and clinical traits associated with ASD. Further investigations are warranted to explore the physiological implications of these structural alterations in vivo.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3