Impact of Breaking up of Sitting Time on Anti-inflammatory Response Induced by Extracellular Vesicles

Author:

Padilha Camila S.1,Antunes Bárbara M.2,Jiménez-Maldonado Alberto2,St-Pierre David H.3,Lira Fabio S.1

Affiliation:

1. Exercise and Immunometabolism Research Group, Post-graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil

2. Facultad de Deportes Campus Ensenada, Universidad Autónoma de Baja California, Ensenada, Mexico

3. Department of Kinesiology, Université du Québec à Montréal (UQAM), Montreal QC, Canada

Abstract

Abstract: Physical inactivity and sedentary behaviors (SB) have promoted a dramatic increase in the incidence of a host of chronic disorders over the last century. The breaking up of sitting time (i.e., sitting to standing up transition) has been proposed as a promising solution in several epidemiological and clinical studies. In parallel to the large interest it initially created, there is a growing body of evidence indicating that breaking up prolonged sedentary time (i.e., > 7 h in sitting time) could reduce overall mortality risks by normalizing the inflammatory profile and cardiometabolic functions. Recent advances suggest that the latter health benefits, may be mediated through the immunomodulatory properties of extracellular vesicles. Primarily composed of miRNA, lipids, mRNA and proteins, these vesicles would influence metabolism and immune system functions by promoting M1 to M2 macrophage polarization (i.e., from a pro-inflammatory to anti-inflammatory phenotype) and improving endothelial function. The outcomes of interrupting prolonged sitting time may be attributed to molecular mechanisms induced by circulating angiogenic cells. Functionally, circulating angiogenic cells contribute to repair and remodel the vasculature. This effect is proposed to be mediated through the secretion of paracrine factors. The present review article intends to clarify the beneficial contributions of breaking up sitting time on extracellular vesicles formation and macrophage polarization (M1 and M2 phenotypes). Hence, it will highlight key mechanistic information regarding how breaking up sitting time protocols improves endothelial health by promoting antioxidant and anti-inflammatory responses in human organs and tissues.

Funder

São Paulo Research Foundation

Coordenação de Aperfeiçoamento Pessoal de Nível Superior – Brazil

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3