Privileged Scaffolds in Drug Discovery against Human Epidermal Growth Factor Receptor 2 for Cancer Treatment

Author:

Peerzada Mudasir Nabi1,Hamdy Rania23,Rizvi Masood Ahmad4,Verma Saurabh1

Affiliation:

1. Tumor Biology and Drug Discovery Laboratory, National Institute of Pathology, Indian Council of Medical Research, Safdarjang Hospital Campus, New Delhi 110029, India

2. Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates

3. Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt

4. Department of Chemistry, University of Kashmir, Srinagar 190006, India

Abstract

Abstract: HER2 is the membrane receptor tyrosine kinase showing overexpression in several human malignancies, particularly breast cancer. HER2 overexpression causes the activation of Ras- MAPK and PI3K/Akt/ NF-κB cellular signal transduction pathways that lead to cancer development and progression. HER2 is, therefore, presumed as one of the key targets for the development of tumor-specific therapies. Several preclinical have been developed that function by inhibiting the HER2 tyrosine kinase activity through the prevention of the dimerization process. Most HER2 inhibitors act as ATP competitors and prevent the process of phosphorylation, and abort the cell cycle progression and proliferation. In this review, the clinical drug candidates and potent pre-clinical newly developed molecules are described, and the core chemical scaffolds typically responsible for anti-HER2 activity are deciphered. In addition, the monoclonal antibodies that are either used in monotherapy or in combination therapy against HER2-positive cancer are briefly described. The identified key moieties in this study could result in the discovery of more effective HER2-targeted anticancer drug molecules and circumvent the development of resistance by HER2-specific chemotherapeutics in the future.

Funder

Department of Health Research, Government of India

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3