Prescription Precision: A Comprehensive Review of Intelligent Prescription Systems

Author:

Tantray Junaid1,Patel Akhilesh1,Wani Shahid Nazir2,Kosey Sourabh3,Prajapati Bhupendra G.4ORCID

Affiliation:

1. Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India

2. Department of Pharmacology, Aman Pharmacy College, Udaipurwati, Rajasthan 333307, India

3. Department of Pharmacy Practice, Indo-Soviet Friendship College of Pharmacy, College of Pharmacy, Moga, Punjab, India

4. Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S.K. Patel College of Pharmaceutical Education & Research, , Ganpat University, Gujarat, India

Abstract

Intelligent Prescription Systems (IPS) represent a promising frontier in healthcare, offering the potential to optimize medication selection, dosing, and monitoring tailored to individual patient needs. This comprehensive review explores the current landscape of IPS, encompassing various technological approaches, applications, benefits, and challenges. IPS leverages advanced computational algorithms, machine learning techniques, and big data analytics to analyze patient-specific factors, such as medical history, genetic makeup, biomarkers, and lifestyle variables. By integrating this information with evidence-based guidelines, clinical decision support systems, and real-time patient data, IPS generates personalized treatment recommendations that enhance therapeutic outcomes while minimizing adverse effects and drug interactions. Key components of IPS include predictive modeling, drug-drug interaction detection, adverse event prediction, dose optimization, and medication adherence monitoring. These systems offer clinicians invaluable decision-support tools to navigate the complexities of medication management, particularly in the context of polypharmacy and chronic disease management. While IPS holds immense promise for improving patient care and reducing healthcare costs, several challenges must be addressed. These include data privacy and security concerns, interoperability issues, integration with existing electronic health record systems, and clinician adoption barriers. Additionally, the regulatory landscape surrounding IPS requires clarification to ensure compliance with evolving healthcare regulations. Despite these challenges, the rapid advancements in artificial intelligence, data analytics, and digital health technologies are driving the continued evolution and adoption of IPS. As precision medicine gains momentum, IPS is poised to play a central role in revolutionizing medication management, ultimately leading to more effective, personalized, and patient-centric healthcare delivery.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3