Advances in Stimuli-responsive Hydrogels for Tissue Engineering and Regenerative Medicine Applications: A Review Towards Improving Structural Design for 3D Printing

Author:

Sithole Mduduzi Nkosinathi1ORCID,Mndlovu Hillary2ORCID,du Toit Lisa C.2,Choonara Yahya Essop2ORCID

Affiliation:

1. Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa

2. Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa

Abstract

Abstract: The physicochemical properties of polymeric hydrogels render them attractive for the development of 3D printed prototypes for tissue engineering in regenerative medicine. Significant effort has been made to design hydrogels with desirable attributes that facilitate 3D printability. In addition, there is significant interest in exploring stimuli-responsive hydrogels to support automated 3D printing into more structurally organised prototypes such as customizable bio-scaffolds for regenerative medicine applications. Synthesizing stimuli-responsive hydrogels is dependent on the type of design and modulation of various polymeric materials to open novel opportunities for applications in biomedicine and bio-engineering. In this review, the salient advances made in the design of stimuli-responsive polymeric hydrogels for 3D printing in tissue engineering are discussed with a specific focus on the different methods of manipulation to develop 3D printed stimuli-responsive polymeric hydrogels. Polymeric functionalisation, nano-enabling and crosslinking are amongst the most common manipulative attributes that affect the assembly and structure of 3D printed bio-scaffolds and their stimuli- responsiveness. The review also provides a concise incursion into the various applications of stimuli to enhance the automated production of structurally organized 3D printed medical prototypes.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiphasic Gels: Achieving New Drug Delivery;Current Pharmaceutical Design;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3