The Emerging Role of Cell Membrane-coated Nanomaterials in Cancer Therapy

Author:

Bhattacharya Sankha1ORCID,Beninger Paul2

Affiliation:

1. Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India

2. Public Health & Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA

Abstract

Abstract: This review investigates the revolutionary application of cell membrane-coated nanoparticles (CMNPs) as a promising avenue for cancer therapy within the embryonic landscape of nanotechnology. Nanoparticles, pivotal in cancer treatment, are systematically examined for their diverse physicochemical structures, categorized as organic (lipid-based, protein-based, and polymer-assisted) and inorganic (carbon-based and metal) varieties. A significant focus is placed on CMNPs, which serve as an innovative drug delivery vehicle, overcoming limitations associated with conventional nanoparticle therapies. This manuscript accurately explores the advantages and challenges of various cell membranes, including those derived from cancer cells, red blood cells, platelets, stem cells, and white blood cells. Importance is placed on their roles in enhancing drug delivery precision, immune system circumvention, and targeted recognition. Detailed insights into the crafting of CMNPs are provided, elucidating membrane extraction and fusion techniques, such as sonication, extrusion, co-extrusion, and microfluidic electroporation. Maintaining membrane integrity during extraction and the benefits of coating techniques in augmenting biocompatibility and targeted drug delivery are underscored. This comprehensive resource consolidates the latest advancements in targeted drug delivery, positioning itself at the forefront of nanotechnology and biomedicine research. Encapsulating various methodologies like membrane extrusion, electrospray, and chemical conjugation, this manuscript showcases the expanding toolbox available to researchers in this dynamic field. Focusing on the unique characteristics of CMNPs, this review explores their multifaceted applications in biomedical research, particularly in tumour therapy. It provides an indepth analysis of the biocompatibility of CMNPs, their stability, immune evasion capabilities, targeted drug delivery precision, increased payload capacity, and retained biological functionality. The manuscript outlines current applications and future prospects of CMNPs in targeted chemotherapy, photothermal and photodynamic therapy, immunotherapy, gene therapy, and innovative therapeutic methods. It concludes by highlighting the advantages of CMNPs in tumour therapy and their transformative potential in reshaping the landscape of cancer treatment.

Funder

CRS Project-UGC-DAE Consortium for Scientific Research

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3