The Potential Radioprotective Effect of Piperine against Radiation-induced Lung Injury in Mice: Histopathological and Biochemical Evaluations

Author:

Safarbalou Asal1,Ebrahimi Fatemeh2,Talebpour Amiri Fereshteh3,Hosseinimehr Seyed Jalal2ORCID

Affiliation:

1. Department of Pharmacy, Mazandaran University of Medical Sciences, Ramsar Campous, Ramsar, Iran

2. Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran

3. Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran

Abstract

Introduction: It has been hypothesized that piperine, the main alkaloid component of black pepper, possesses a unique radioprotective effect. This study aimed to investigate the protective effect of piperine against Radiation-Induced Lung Injury (RILI) in mice. Methods: Firstly, eighty male mice were divided into eight groups; the control group did not receive any dosage of piperine and radiation (6 Gy), and the other groups received piperine alone at doses 10, 25, and 50 mg/kg, radiation, and radiation-piperine combination (6 Gy + 10, 25, and 50 mg/kg). Animals received piperine by gavage for 7 consecutive days. To investigate the effect of piperine pretreatment in mice that were exposed to radiation, histopathological and biochemical evaluations (markers of oxidative stress) were performed. Irradiation led to an increase in oxidative stress (increase in MDA and PC). Pretreatment of piperine in all three doses in irradiated mice was able to reduce oxidative stress compared to mice that were only exposed to radiation. Results: Piperine at a dose of 25 mg/kg exhibited the highest protective effect as compared to other doses. Also, in the histopathological examination, it was seen that pretreatment with piperine was able to improve the infiltration of inflammatory cells and reduce the thickness of the alveolar septum and air sac damage. Conclusion: The outcomes completely proved significant lung protection by piperine in mice through reducing oxidative stress. This natural compound could be considered a protective agent against lung injury induced by ionizing radiation.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3