Network Pharmacology, Molecular Docking Analysis and Molecular Dynamics Simulation of Scutellaria baicalensis in the Treatment of Liver Fibrosis

Author:

Wang Junrui1ORCID,Wu Zhuoqing2,Chen Xiaolei1,Sun Ying1,Ma Shuyao1,Weng Jingdan1,Zhang Yuxin1,Dong Keke3,Shao Jiangjuan1,Zheng Shizhong1

Affiliation:

1. Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China

2. Nanjing Foreign Language School, Nanjing, China

3. PharmaBlock Sciences (Nanjing), Inc, Nanjing, China

Abstract

Background: Traditional Chinese medicine Scutellaria Baicalensis (SB), one of the clinical firstline heat-clearing drugs, has obvious symptomatic advantages for hepatic fibrosis with dampness-heat stasis as its syndrome. We aim to predict and validate the potential mechanism of Scutellaria baicalensis active ingredients against liver fibrosis more scientifically and effectively. Methods: The underlying mechanism of Scutellaria baicalensis in inhibiting hepatic fibrosis was studied by applying network pharmacology, molecular docking and molecular dynamics simulation. Expression levels of markers in activated Hepatic Stellate Cells (HSC) after administration of three Scutellaria baicalensis extracts were determined by Western blot and Real-time PCR, respectively, in order to verify the anti-fibrosis effect of the active ingredients Results: There are 164 common targets of drugs and diseases screened and 115 signaling pathways obtained, which were mainly associated with protein phosphorylation, senescence and negative regulation of the apoptotic process. Western blot and Real-time PCR showed that Scutellaria baicalensis extracts could reduce the expression of HSC activation markers, and Oroxylin A had the strongest inhibitory effect on it. Molecular docking results showed that Oroxylin A had high binding activity to target proteins. Molecular dynamics simulation demonstrates promising stability of the Oroxylin A-AKT1 complex over the simulated MD time of 200 ns. Conclusion: Scutellaria baicalensis active ingredients may inhibit HSC proliferation, reduce the generation of pro-inflammatory factors and block the anti-inflammatory effect of inflammatory signal transduction by inducing HSC apoptosis and senescence, thus achieving the effect of anti-fibrosis.

Funder

National Natural Science Foundation of China

National College Student Innovation and Entrepreneurship Training Program

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3