Integrated Network Pharmacology and Cellular Assay to Explore the Mechanisms of Selenized Tripterine Phytosomes (Se@Tri-PTs) Alleviating Podocyte Injury in Diabetic Nephropathy

Author:

Zhu Shiping1,Liu Qiubo1,Chang Yuling2,Luo Chunhua3,Zhang Xingwang4,Sun Shengyun1

Affiliation:

1. Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China

2. Department of Chinese Traditional Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China

3. Newborn Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou, People’s Republic of China

4. Department of Pharmaceutics, School of Pharmacy, Jinan University, Guangzhou, 511443, People’s Republic of China

Abstract

Aim: This work aimed to elucidate the mechanisms of Se@Tri-PTs in alleviating podocyte injury via network pharmacology and in vitro cellular assay. Background: Selenized tripterine phytosomes (Se@Tri-PTs) have been confirmed to undertake synergistic and sensitized effects on inflammation, which may be curatively promising for diabetic nephropathy (DN). However, the mechanisms of Se@Tri-PTs in alleviating podocyte injury, a major contributor to DN, still remain unclear. Objective: The objective of the study was to find out the underlying mechanisms of Se@Tri-PTs in alleviating podocyte injury in diabetic nephropathy. Methods: The key components and targets of Tripterygium wilfordii (TW) significant for DN as well as the signaling pathways involved have been identified. A high glucose-induced podocyte injury model was established and verified by western blot. The protective concentration of Se@Tri-PTs was screened by CCK-8 assay. Podocytes cultured with high glucose were treated with Se@Tri-PTs under protective levels. The expression of key protective proteins, nephrin and desmin, in podocytes, was assayed by western blot. Further, autophagy- related proteins and factors, like NLRP3, Beclin-1, LC3II/LC3, P62, and SIRT1, were analyzed, which was followed by apoptosis detection. Results: Network pharmacology revealed that several monomeric components of TW, especially Tri, act on DN through multiple targets and pathways, including the NLRP3-mediated inflammatory pathway. Se@Tri- PTs improved the viability of podocytes and alleviated their injury induced by high glucose at 5 μg/L or above. High-glucose induction promoted the expression of NLRP3 in podocytes, while a low concentration of Se@Tri-PTs suppressed the expression. A long-term exposure of high glucose significantly inhibited the autophagic activity of podocytes, as manifested by decreased Beclin-1 level, lower ratio of LC3 II/LC3 I, and up- regulation of P62. This abnormality was efficiently reversed by Se@Tri-PTs. Importantly, the expression of SIRT1 was up-regulated and podocyte apoptosis was reduced. Conclusion: Se@Tri-PTs can alleviate podocyte injury associated with DN by modulating NLRP3 expression through the pathway of SIRT1-mediated autophagy.

Funder

Guangzhou Science and Technology Plan

Fundamental Research Funds for the Central Universities

Guangdong Basic and Applied Basic Research Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3