Demonstration of Advanced Data Mining Tools for Optimization of Pellets Employing Modified Extrusion-pelletization Technique

Author:

Rana Hardika1,Dholakia Mansi2,Gohel Mukesh1,Omri Abdelwahab3,Thakkar Vaishali1,Gandhi Tejal1

Affiliation:

1. Department of Pharmaceutics and Pharmaceutical Technology, Anand Pharmacy College, Anand, Gujarat, India

2. Faculty of Pharmacy, Dharamsinh Desai University, Nadiad - 387001, India

3. Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada

Abstract

Background: The multi particulate drug delivery system is preferred due to its numerous advantages but the batch to batch consistency and to achieve desired physical properties are the major challenges in the formulation of such dosage form. Objective: The objective of the present study was to explore the concept of quality by design for the development of galantamine HBr controlled release pellets using a modified palletization technique. Methods: Compritol 888 and Ethocel were chosen as hydrophobic release retardants, while Avicel was chosen as pelletization aid. A compatibility study was conducted between the drug and excipients. Drug loaded extrudes were prepared by using a mixture of isopropyl alcohol, and dichloromethane. Before converting the wet extrudes into pellets, pregelatinized starch was sprinkled on them to improve the physical properties of the pellets. The pellets were characterized for size, shape, and flow. The critical evaluation parameter was the drug dissolution pattern in distilled water. The dissolution data were treated with advanced data mining techniques. The in-vivo profile was predicted employing pharmacokinetic parameters of the drug and in-vitro drug release data of optimized batch pellets. Results: The failure mode and effect analysis revealed that the amount of Compritol 888 ATO and Ethocel were the most critical formulation parameters. The results of FTIR and DSC revealed compatibility between the drug and the excipients. The spherical pellets exhibited good flow. The drug dissolution studies of the batches, prepared according to the central composite design, revealed modified drug release. Multiple regression analysis and analysis of variance were performed to identify statistically significant factors. Contour plots demonstrated the impact of the amount of Compritol 888 and ethyl cellulose. The Design-Expert software was used to identify optimized formulation. The predicted in-vivo plasma concentration-time profile revealed the modified drug release up to 12h. Conclusions: Compritol and Ethocel were able to retard the drug release up to 12 hrs in distilled water. The innovative finding of this study is the use of a dry binder (pregelatinized starch) to improve the characteristics of pellets. Other dry binders are expected to show a similar effect. The newer processing technique can be of use in the industry.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3