Poloxamer based Urapidil Loaded Chitosan Microparticle in Approach to Improve the Mechanical Strength by Tensile Strength and Entrapment Determination

Author:

Nandi Sisir1ORCID,Roy Harekrishna234,Nayak Bhabani Shankar3

Affiliation:

1. Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, 244713, India

2. Biju Patnaik University of Technology, Rourkela, Odisha, 769004, India

3. Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack, 754202, Odisha, India

4. Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, 522503, Andhra Pradesh, India

Abstract

Background: The literature review highlighted the issues related to the poor mechanical strength of chitosan-based microparticles. In an attempt to resolve the stated drawback, the microparticles are prepared with a suitable combination of poloxamer-188 (pluronic) and chitosan-based hydrogels. Objective: The current study deals with urapidil-loaded chitosan microparticles incorporating chitosan-based hydrogels and small polyanionic electrolytes. The mechanical strength was ascertained by entrapment efficiency and texture analyzer. Method: Chitosan-based hydrogels and the combination of poloxamer and further microparticles are prepared by counter-ion aggregation technique in polyanionic electrolyte medium (20 % w/v). During the preparation, poloxamer is incorporated to improve the mechanical strength, which is ascertained in terms of adhesive strength (tensile strength) by texture analyzer and entrapment efficiency. The prepared microparticles are also subjected to micrometric studies, swelling index, surface morphology study, drug-polymer interaction study, and zeta analysis. Result: It was observed that there is a remarkable increase in entrapment efficiency (maximum of 78.56 % from SSP4) with the progressive increase in poloxamer-188. In addition to that, adhesive strength was also studied by a texture analyzer for all microparticles. Sodium citrate-based products exhibited superior adhesive strength values compared to sodium sulfate and sodium tripolyphosphate-based and signified the incorporation of poloxamer-188. A significant finding was also recorded for the swelling properties to microenvironmental pH attributed to polyanions. It observed Sodium TPP microparticles continued to swell in phosphate buffer pH 6.8. Zeta value was found to be maximum with -5.2 mV; it could further be improved by adding electrolytes. TPP4 showed a comparatively larger particle size of 8.07 µm. Polydispersity index value ascertained homogenous dispersion of microparticles. SEM study revealed prominent porous surfaces for sodium tripolyphosphate microparticles. Conclusion: The study revealed that the addition of poloxamer-188 improved the mechanical strength, identified by entrapment efficiency and texture analysis. SCP4 microparticle was found to be the best formulation among all.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3