An in silico Approach to Identify Potential NDM-1 Inhibitors to Fight Multidrug Resistant Superbugs

Author:

Barman Seema1,Phukan Bonashree1,Borah Partha Sarathi1,Puzari Minakshi2,Sharma Mohan2,Chetia Pankaj2

Affiliation:

1. Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, 786004, Assam, India

2. Department of Life Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India

Abstract

Background: Antibiotic resistance is a global threat and the emergence of Multi-Drug Resistant (MDR) bacteria compromises the treatment options, limiting the number of available drugs. New Delhi Metallo-beta-lactamase-1 (NDM-1) mediated drug resistance is one of the mechanisms associated with multidrug resistance. </P><P> Objective: In our study, reverse chemogenomics technique was applied for identification of potential NDM-1 inhibitors from plant sources to combat the issue of drug resistance in Gram-negative bacteria. </P><P> Method: Computational methodologies were employed to understand and validate the molecular interaction between the target protein and the ligands. A total of 22 plant-based compounds were screened for inhibitory activity against NDM-1 through subsequent comparative molecular docking. The compounds were passed through Lipinski filter and ADME-Tox filter, which represent an important part of drug discovery. </P><P> Result: On the basis of optimum molecular docking values, Garcinol was recognized as the most potential NDM-1 inhibitor. However, in Quantitative-Structure Activity Relationship assessment, Ajugasterone-C showed the least value of minimum inhibitory concentration. Most of the compounds were found to comply with Lipinski rule of 5 and showed good results in ADME-Tox filtration. </P><P> Conclusion: Garcinol and Ajugasterone-C were found to possess drug like characteristics and can act as potential NDM-1 inhibitors.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3