New Insights into Microglia as Therapeutic Targets in Alzheimer’s Disease

Author:

Mandlik Deepa S.1,Mandlik Satish K.2,Choudhary Heena B.2

Affiliation:

1. Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 411038, India

2. Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 411038, India

Abstract

Abstract: Alzheimer's disease (AD) is the most common neurodegenerative disease, accounting for 60–70% of dementia cases globally. Inflammation of the central nervous system (CNS) caused by microglia is a common characteristic of neurodegenerative illnesses such as Parkinson's disease and AD. Research has recently examined the relationship between neurodegenerative diseases and CNS microglia. Microglial cells comprise 10–15% of all CNS cells and are brain-resident myeloid cells mediating critical processes to support the CNS. Microglia have a variety of receptors that operate as molecular sensors, detecting exogenous and endogenous CNS injuries and triggering an immune response. Microglia serve as brain guardians by boosting phagocytic clearance and providing trophic support to enable tissue repair and maintain cerebral homeostasis, in addition to their traditional immune cell activity. At rest, microglia manage CNS homeostasis by phagocytic action, which removes pathogens and cell debris. Microglia cells that have been "resting" convert into active cells that create inflammatory mediators, protecting neurons and protecting against invading pathogens. Neuronal damage and neurodegenerative disorders are caused by excessive inflammation. Different microglial cells reply at different phases of the disease can lead to new therapy options and reduced inflammatory activity. This review focuses on the potential function of microglia, microglia subtypes, and M1/M2 phenotypic changes associated with neurodegenerative disorders. Microglial membrane receptors, the involvement of microglia in neuroinflammation, microglial targets in AD and the double role of microglia in AD pathogenesis are also discussed in this review.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3