2', 4'-dihydroxy-3, 4-methylenedioxychalcone Activate Mitochondrial Apoptosis of Ehrlich Ascites Carcinoma Cells

Author:

Khatun Mahbuba1,Islam Farhadul1ORCID,Gopalan Vinod2ORCID,Rahman Md. Motiar3,Zuberi Natasha1,Khatun Laboni1,Rakib Md. Abdur1ORCID,Islam Md. Azizul3,Lam Alfred King-Yin2ORCID,Khanam Jahan Ara1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh

2. Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, QLD-4222, Australia

3. Department of Chemistry, University of Rajshahi, Rajshahi-6205, Bangladesh

Abstract

Background: Development of effective cancer-chemotherapy is the most challenging field due to the toxicity of chemo-agents. Objective: As chalcone has been known to have pharmacological applications, here the aim is to synthesized three chalcone derivatives, 2',4'-dihydroxy-3,4-methylenedioxychalcone (C1), 2'-hydroxy- 2,4, 6-trimethoxychalcone (C2) and 2'-hydroxy-4-methylchalcone (C3) and investigate their anti-cancer properties against Ehrlich Ascites Carcinoma (EAC) cell. Method: Anticancer properties against EAC cells were studied by examining growth inhibition, MTT assays, tumour-bearing mice survival, tumour weight measurement and haematological profiles. Moreover, apoptosis of EAC cells was investigated by fluorescence microscopy, flowcytometry and DNA fragmentation assays. Expression of apoptosis related genes were studied by reverse transcriptase-PCR (RT-PCR). Results: Among the compounds, C1 exhibited highest cell growth inhibition at 200 mg/kg/day (81.71%; P < 0.01). C1 treatment also increased the life span of EAC-bearing mice (82.60%, P < 0.05) with the reduction of tumour burden (<) compared to untreated EAC-bearing mice. In vitro study indicated that C1 killed EAC-cells in a dose-dependent manner and induced mitochondria-mediated apoptotic pathways. In addition, C1 treated cells exhibited increased apoptotic features such as membrane blebbing, chromatin condensation, and nuclear fragmentation after Hoechst 33342 staining. Increased fragmentation of DNA in gel electrophoresis followed by C1 treatment further confirmed apoptosis of EAC cells. EAC cells treated with C1 showed reduced Bcl-2 expression in contrast to notable upregulation of p53 and Bax expression. It implied that C1 could reinstate the expression of pro-apoptotic tumour suppressor and inhibit anti-apoptotic genes. Conclusions: Thus, C1 showed significant growth inhibitory properties and induced apoptosis of EAC cells.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3