Development of Cinnarizine Microballoons by Sequential Optimization and In Vivo Imaging by Gamma Scintigraphy

Author:

Ghosh Bijaya1,Chatterjee Arka1,Kirtania Moumita Das2,Chattopadhyay Sankha3

Affiliation:

1. NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, 124 BL Saha Road, Kolkata-700053, West Bengal, India

2. School of Pharmaceutical Technology, Adamas University, Adamas Knowledge City, Barasat- Barrackpore Road, Jagannathpur, Kolkata-700126, West Bengal, India

3. Variable Energy Cyclotron Centre, Board of Radiation & Isotope Technology, Sector 1 Block AF, Bidhan Nagar, Kolkata-700 064, West Bengal, India

Abstract

Background: The drug cinnarizine is used in the treatment of vertigo and migraine. The main drawback is its very low water solubility which causes unpredictable bioavailability. Solubility is better in acidic pH. Therefore, gastro-retentive formulation would be beneficial to improve the bioavailability of the drug. Objective: The objective of the study was to prepare floating microballoons of cinnarizine which would float in the gastric fluid and release the drug in a sustained manner. Methods: Microballoons were prepared by diffusion solvent evaporation technique using polymers (Eudragit® S100, Eudragit® RLPO, Eudragit RL®100), characterised by FTIR, XRD, DSC and optimized by sequential simplex design. For optimization, formulations were graded with respect to formulation efficiency (percentages of yield, sphericity and drug content) and performance index (buoyancy and dissolution efficiency), from which the overall response of the formulations was determined. Finally, the optimized formulation was radiolabelled with 99mTc-MIBI and fed to Wistar albino rats and was evaluated for gastric retention by gamma scintigraphic study. Results: FTIR studies indicated drug and polymers were compatible. DSC and XRD analysis confirmed that the drug was in amorphous state in the formulation. SEM studies confirmed the sphericity of the microballoons. Formulation N7 showed the best overall response (65.61) which was the nearest to the target. Gamma scintigraphic study confirmed that the formulation was retained in the stomach for more than 5 h. Conclusion: The results indicated that floating microballoons of cinnarizine would stay in the stomach for prolonged period and thereby improve the bioavailability of the drug.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3