Chlororespiration as a Protective Stress-inducible Electron Transport Pathway in Chloroplasts

Author:

Zolotareva Elena K.,Polishchuk Oleksandr V.

Abstract

Chlororespiration is the uptake of oxygen into the respiratory electron transport chain (ETC) localized in the thylakoid membranes of chloroplasts. The chlororespiratory ETC interacts with photosynthetic electron transport and participates in the non-photochemical reduction/oxidation of the plastoquinone pool (PQP) accompanied by O2 consumption. The two key thylakoid enzymes in chlororespiration are the plastid-encoded NAD(P)H dehydrogenase complex (NDH) and the nucleus-encoded terminal plastoquinol oxidase (PTOX). The contribution of chlororespiratory electron flux to the total electron flow in non-stressed plants is considered insignificant. In contrast, under abiotic stresses, chlororespiration appears to be triggered, at least in some photosynthetic organisms, acting as a protective alternative electron transport pathway. There is evidence of NDH complex and PTOX increasing their activity and/or abundance when plants experience high light, drought, heat, or low-temperature stresses. Alternative electron transfer to oxygen via PTOX protects PQP from over-reduction under stress conditions. For instance, it was shown that PTOX-dependent electron drainage accounted for up to 30% of total PSII electron flow in salt-stressed plants. PTOX is not bound to the thylakoid membrane in dark-adapted leaves but is associated with it at intense illumination and high transmembrane proton gradient (ΔpH) or membrane potential (Δψ). It was also shown that PTOX is capable of lateral translocation from stromal lamellae to granal thylakoid stacks under salt stress. Such changes in PTOX localization increase the accessibility of the substrate (plastoquinol) and the turnover rate of the enzyme. The available data allow considering PTOX as a possible target for manipulation to increase stress tolerance in sensitive plants.

Publisher

Bentham Science Publishers Ltd.

Subject

Soil Science,Agronomy and Crop Science,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plant Adaptation to Changing Environment and its Enhancement;The Open Agriculture Journal;2022-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3