Author:
Mady Ahmed Yehia,Shein Evgeny
Abstract
Background and Objective:Pedotransfer Functions (PTFs) are widely used for estimating soil thermal diffusivity. Some attempts have been made to indirectly predict soil thermal diffusivity from the easy available fundamental soil physics properties. The aim of the work was to validate usage PTFs with Nonlinear Regression (NLR) for estimating soil thermal diffusivity (KD), moreover was to select the best predictor variables used for determination of PTFs.Materials and Methods:Soil thermal diffusivity was measured at different values of water content using Kondratieff method. The parameters of the quadratic equation, which described the relation between thermal diffusivity and water content, were determined by the fitting curve and using PTFs (exponential equations) based on soil physical properties. The Combination of different soil physical properties used as PTF model’s independent variables was tested. Three classes of PTFs were proposed using NLR to estimate KDwere: KDPTF-1 (Sand+ Silt+ Clay), KDPTF-2 (Sand+ Silt+ Clay + Bulk density), and KDPTF-3 (Sand+ Silt+ Clay+ Bulk density + Organic matter).Results:The best class of PTF could be used for calculating the parameters of the quadratic equation and soil thermal diffusivity, was KDPTF-1 which taking into account the percentage of sand, silt and clay, RMSE=2.94×10-8m2/s, and GMER =1.05.Conclusion:The quadratic and exponential equations were representing the nonlinear regression equations, which could be used for estimating soil thermal diffusivity at different values of water content from easily available data on soil texture, bulk density, and organic matter content.
Publisher
Bentham Science Publishers Ltd.
Subject
Soil Science,Agronomy and Crop Science,Animal Science and Zoology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献