Estimating Soil Thermal Diffusivity Using Pedotransfer Functions with Nonlinear Regression

Author:

Mady Ahmed Yehia,Shein Evgeny

Abstract

Background and Objective:Pedotransfer Functions (PTFs) are widely used for estimating soil thermal diffusivity. Some attempts have been made to indirectly predict soil thermal diffusivity from the easy available fundamental soil physics properties. The aim of the work was to validate usage PTFs with Nonlinear Regression (NLR) for estimating soil thermal diffusivity (KD), moreover was to select the best predictor variables used for determination of PTFs.Materials and Methods:Soil thermal diffusivity was measured at different values of water content using Kondratieff method. The parameters of the quadratic equation, which described the relation between thermal diffusivity and water content, were determined by the fitting curve and using PTFs (exponential equations) based on soil physical properties. The Combination of different soil physical properties used as PTF model’s independent variables was tested. Three classes of PTFs were proposed using NLR to estimate KDwere: KDPTF-1 (Sand+ Silt+ Clay), KDPTF-2 (Sand+ Silt+ Clay + Bulk density), and KDPTF-3 (Sand+ Silt+ Clay+ Bulk density + Organic matter).Results:The best class of PTF could be used for calculating the parameters of the quadratic equation and soil thermal diffusivity, was KDPTF-1 which taking into account the percentage of sand, silt and clay, RMSE=2.94×10-8m2/s, and GMER =1.05.Conclusion:The quadratic and exponential equations were representing the nonlinear regression equations, which could be used for estimating soil thermal diffusivity at different values of water content from easily available data on soil texture, bulk density, and organic matter content.

Publisher

Bentham Science Publishers Ltd.

Subject

Soil Science,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3