A Rapid Bioassay to Evaluate Efficacy of Hypovirulent Binucleate Rhizoctonia in Reducing Fusarium Crown and Root Rot of Tomato

Author:

Muslim A.,Hyakumachi Mitsuro,Kageyama Koji,Suwandi Suwandi,Pratama Rahmat

Abstract

Background: Fusarium Oxysporum f.sp. Radicis-Lycopersici (FORL) caused Fusarium Crown and Root Rot of tomato (FCRR), it’s a serious constraint on tomato production and contributing to yield losses. Aims/Method: Using a rapid bioassay, Hypovirulent Binucleate Rhizoctonia (HBNR) was tested for their ability to reduce Fusarium Crown and Root Rot (FCRR) of tomato, caused by Fusarium oxysporum f.sp. radicis lycopersici (FORL). Roots of tomato seedlings growing on 2% water agar in plastic boxes were inoculated with living or dead mycelial disks of HBNR. After 24 h, the pathogen was applied at 0, 3, 6, and 9 cm away from the position of the HBNR. Results: When living HBNR was used, the treatments provided significant protection to tomato seedlings from FCRR infection at all distances tested. Tomato plants pre-inoculated with living HBNR at different times (12 h and 24 h before inoculation with the pathogen) and challenged with FORL showed significant reduction of FCRR lesion development. A significant reduction was still observed even when HBNR was inoculated simultaneously with or 12 h after inoculation of a pathogen. Seedlings treated with dead HBNR and culture filtrates also showed significantly reduced FCRR lesion development. When living HBNR were enveloped by a polycarbonate membrane filter, a significant reduction of FCRR lesion development was still observed. Conclusion: In all experiments, reduction of FCRR lesion development in seedlings treated with HBNR tended to decrease with longer distance from the inoculation point of FORL and HBNR. We developed a simple, rapid, and miniaturized bioassay for evaluating the efficacy of HBNR against FORL. The bioassays require only 12 - 18 days, which is at least 12 days less than the soil system employed by previous researchers.

Publisher

Bentham Science Publishers Ltd.

Subject

Soil Science,Agronomy and Crop Science,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3