Development of a Suitable Method for the Synthesis of New Thiadiazoles Using Hydrazonoyl Halides

Author:

Alarbash Munirah F.1,Al-Faiyz Yasair S.1,Wiggins Jeffery S.2,Sayed Abdelwahed R.23

Affiliation:

1. Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia

2. Department of Polymer Science & Engineering, University of Southern Mississippi, Hattiesburg, Mississippi, 39406, United States

3. Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-suef, 62514, Egypt

Abstract

Background: Hydrazonoyl halides and methylhydrazinecarbodithioate have been generally utilized in the synthesis of heterocycles. Methods: This study describes a new and simple method to prepare new thiadiazoles from the reaction of N-(naphthalen-1-yl)-2-oxopropanehydrazonoyl chloride or ethyl 2-chloro-2-(2-(naphthalen-1-yl)hydrazono)acetate with methylhydrazinecarbodithioate in the presence of basic medium under reflux. In this study, the synthetic schemes are designed to show the chemical reactions. Elements analysis, Fourier Transform Infrared Spectroscopy (FT-IR), Mass Spectrom-etry (MS), and Nuclear Magnetic Resonance (NMR) are used to identify and characterize the final compounds. Results: There are two ways to synthesize the final thiadiazoles molecules. The first can be through nucleophile substitution of thiolate of methylhydrazonecarbodithioate to the chlorinated carbon of hydrazonoyl. Hydrochloric acid is then removed to provide an S-alkylated intermediate. Methanethiol is eliminated from this intermediate by an in situ intra-molecular cyclocondensation process to give the final products. The subsequent [3+2] cy-cloaddition involving 1,3-dipolar cycloadditions of nitrilimines to C=S is succeeded by the re-moval of methanethiol. Conclusion: This approach utilizes affordable, readily accessible reagents and simple reaction conditions to produce new thiadiazole derivatives with satisfactory yields.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3