Pharmacophore Optimization using Pharmacophore Mapping, QSAR, Docking, and ADMET Screening of Novel Pyrimidines Derivatives as Anticancer DNA Inhibitors

Author:

Patil Shital M.1,Randive Vrushali1,Mahadik Indrani1,Bhandari Shashikant1,Asgonkar Kalyani1,Nikalje Piyush1

Affiliation:

1. Department of Chemistry, AISSMS College of Pharmacy, Kennedy Road, Pune-01, India

Abstract

Abstract: Cancer is a global health issue, and cancer cells' resistance to existing treatments has prompted a search for new anticancer drugs. The DNA of cancer cells is regarded as the primary target for developing new molecules. In-silico studies aid in the optimization of current pharmacophores and the development of new molecules. This study aimed to optimize the pharmacophore utilizing QSAR studies and pharmacophore mapping to generate novel chemical entities (NCEs) of pyrimidine derivatives as DNA inhibitors for cancer treatment. Furthermore, these NCEs were subjected to molecular docking and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) screening to determine their drug-likeness. This study used Schrodinger's Maestro (13.4) software for pharmacophore mapping, QSAR, molecular docking, and ADME. Toxicity was determined using the Pro Tox II online tool. Pharmacophore mapping was performed using the phase module. The QSAR model was generated using an atom-based QSAR approach. The Qik prop module was utilized for ADME prediction. Molecular docking was done in Standard precision mode. In pharmacophore mapping, we discovered that the DHHRR_1 hypothesis fitted best, with a survival score of 5.4408. The optimal atom-based QSAR model produced correlation coefficients of R2 = 0.9487 and Q2 = 0.8361. Based on QSAR research, a new set of 43 derivatives was generated. These compounds pass all ADMET requirements. In molecular docking investigations, three compounds demonstrated binding with key amino acids with a significant dock score comparable to the standard. Considering docking data and pharmacokinetic behavior of newly developed compounds, molecules NC10, NC9, and NC43 have the highest DNA binding capability.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3