Polydopamine-Modified Magnetic Nanoparticles (Fe3O4@PDA) for the Copper-Catalyzed Ipso-Hydroxylation of Arylboronic Acids and Subsequent O-Benzylation in Aqueous Media

Author:

Lee Kwang-Beom1,Shin Ueon Sang23ORCID,Kim Seung-Hoi1ORCID

Affiliation:

1. Department of Chemistry, Dankook University, Cheonan, 31116, Republic of Korea

2. Department of Nanobiomedical Science, BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea

3. Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea

Abstract

Abstract: A novel advancement has emerged in the realm of catalysis with the development of an innovative method for the ipso-hydroxylation of arylboronic acids. This approach harnessed the power of bio-compatible polydopamine-coated magnetite support (Fe3O4@PDA) in conjunction with a copper salt, forming a heterogeneous catalytic environment. The resulting catalytic system facilitated oxidative hydroxylation under mild aerobic conditions at room temperature in aqueous conditions. This environmentally friendly process allowed for the seamless conversion of diverse arylboronic acids featuring varying electron-withdrawing or electron-donating groups into the corresponding phenols, achieving remarkably high yields. Notably, the versatility of the catalytic system extended to a one-pot tandem O-benzylation of the resultant phenolic intermediates. The additional dimension of the process underscores its efficiency, offering a streamlined route to synthesizing benzyl phenyl ethers with a commendable level of success. The significance of the present catalytic methodology lies not only in its efficacy but also in its eco-friendly attributes, showcasing the potential for sustainable and efficient transformations in organic synthesis.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3