Synthesis and Reactivity of Dihalofuranones

Author:

Lyons Thérèse A.1,Gahan Cormac G. M.1,'Sullivan Timothy P. O1

Affiliation:

1. School of Pharmacy, University College Cork, Cork, T12 YN60, Ireland

Abstract

Background: Halogenated furanones have been found to act as potent quorum sensing inhibitors in several bacterial species. It is believed that dihalofuranones covalently bind to the LuxS enzyme, which is necessary for autoinducer-2 synthesis. In addition to their antimicrobial activity, halogenated furanones also possess anti-cancer, antioxidant, and depigmentation properties. However, traditional routes to these compounds are low-yielding and capricious. Objective: This study aimed at investigating higher-yielding preparations of gem-dihalofuranones and comparing their reactivity using Suzuki chemistry. Methods: Ramirez dibromoolefination of maleic anhydride was optimised using a variety of conditions. A similar route was investigated for the preparation of bromofluorofuranones and dichlorofuranones. The conversion of a dichlorofuranone to the corresponding iodofuranone derivatives using microwave-assisted Finkelstein chemistry was also studied. Lastly, the reactivity of the different dihalofuranones was compared by Pd-mediated coupling with phenylboronic acid. Results: A higher-yielding, concise synthesis of dibromofuranones was developed using a modified Ramirez reaction. Additionally, a telescoped preparation of dichlorofuranone proved higher yielding than previous approaches. Bromine- and iodine-substituted dihalofuranones proved more reactive than their chlorine-substituted analogues. Conclusion: Higher yielding routes to bromine-, fluorine-, chlorine- and iodine-containing dihalofuranones were successfully developed. Suzuki couplings of gem-dihalofuranones were found to proceed with high stereoselectivity.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3