Novel Persian Gulf Aminated Alginate Derivatives from Sargassum Bovaneum: Synthesis and Characterization

Author:

Khodayar Shokouh1ORCID,Shushizadeh Mohammad Reza23ORCID,Tahanpesar Elham1ORCID,Makhmalzadeh Behzad Sharif14ORCID,Sanaeishoar Haleh1ORCID

Affiliation:

1. Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2. Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

3. Marine Pharmaceutical Science Research Center and Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

4. Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Abstract

Aims: The aim of the study was to extract and characterize alginate from a new source, conduct synthesis and characterization of novel aminated alginate derivatives, make a comparison of physicochemical properties of extracted sodium alginate with its aminated derivatives, and investigate the effect of diamines chain length on physicochemical properties of newly synthesized derivatives. Background: Alginate is a natural biopolymer found in marine brown seaweeds. Alginate is widely used in the industry due to its features, such as gelling ability, biocompatibility, biodegradability, hydrophilicity, and non-toxicity. Alginate has two types of functional groups, free hydroxyl and carboxyl groups, which can be modified. Methods: In this study, sodium alginate was extracted from sargassum boveanum in basic media and characterized by physical and spectral properties. In order to prepare alginate precursors with clickable groups for hydrogel cross-linking application, extracted sodium alginate was further treated with two different diamines, diaminoheptane (DAH) and diaminopropane (DAP), in the presence of 1-ethyl-3- (3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to form amide linkages on the alginate backbone and synthesise aminated derivatives. The products were characterized by techniques, such as FTIR, 1HNMR, TGA, XRD, and elemental analysis. Results: The average molar weight and the intrinsic viscosity of alginate from Sargassum bovaneum with a yield of 24.38% were 41.53 kDa and 0.9 dL/g 105 cps (2.5% C). Results showed that as the alginate concentration increased, the flow rate decreased with a mild slope. Conclusion: Elemental analysis (CHNS) of alginate derivatives indicated the percent of amine groups to be increased after amination reaction in comparison to corresponding alginates. The thermal analysis results indicate that the thermal stability of the sodium alginate is better than graft copolymers. Synthetic derivatives showed no particular sensitivity to environmental stimuli, such as temperature and pH changes.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3