An Initial Demonstration of Polyester Monomer Coordination Properties: Synthesis and Biological Activity of Metal Complexes Derived from a New Nanosized Diol

Author:

Elhusseiny Amel F.1,Hussien Hend M.2,Hassan Hammed H.A.M.1

Affiliation:

1. Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 2-Moharram Beck, Alexandria-21568, Egypt

2. Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University, Canal El Mahmoudia Street, Alexandria 21311, Egypt

Abstract

A part of a running research project directed to building coordinated polymers based on the rigid aromatic s-triazine, the researchers reported the synthesis, characterization, antimicrobial, antioxidant and anti-inflammatory activities of four new transition metal complexes derived from the nanosized diol monomer (H2L ligand) as early representatives of its nanosized o-naphthol-based polyester. The reaction of the new nanosized N2O2 donor diimine containing sulfone with zinc (II), copper (II), nickel (II) and cobalt (II) ions offered nonconducting metal complexes. The SEM image showed the diol monomer was organized as well-defined nanosized rod-like morphology. Spectroscopic and magnetic susceptibility studies displayed the tetrahedral geometries for Zn (II), Co (II) and Ni (II) complexes while the Cu (II) complex had square planar geometry. The antioxidant and antiinflammatory activities were in the order [Cu2L2].4H2O > [Zn2L2] > [Ni (HL)2] > [Co2L2] > H2L. Despite the ligand, [Cu2L2].4H2O, [Zn2L2] and [Co2L2] complexes displayed no efficacy against the screened microbes, only the tetrahedral Ni (II) complex exhibited moderate activity. The reporting complexes possessed several notable advantages that render them as promising alternatives for the development of therapeutic agents. Selection of the rigid O-substituted naphthol ring as a source of Odonor ligands is expected to construct high dimensional frameworks and more easily contributing and controlling metallic topology.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3