Mechanistic and Kinetic Study of Atmospheric Oxidation of Chlordane Initiated by OH Radicals

Author:

Ding Zhezheng1,Yi Yayi1,Xu Fei1,Zhang Qingzhu1,Xu Xiaoli2,Wang Wenxing1

Affiliation:

1. Environment Research Institute, Shandong University, Jinan 250100, China

2. School of Environment Science and Engineering, Shandong University, Jinan 250100, China

Abstract

Chlordane, one of the extremely hazardous Persistent Organic Pollutants (POPs), was widely used as pesticides all over the world and its residues have been detected at high concentrations in many areas. As a species of Semi-Volatile Organic Compounds (SVOCs), chlordane exists mainly in the atmosphere where it can be migrated and transformed. Due to the carcinogenic and mutagenic properties, understanding its atmospheric fate is of great significance. In the present work, the oxidation mechanism of chlordane initiated by OH radicals under the atmospheric conditions was investigated by using Density Functional Theory (DFT). The geometrical structures were optimized at the M06- 2X/6-311+g(d,p) level and single-point energies were calculated at the M06-2X/6-311+g(3df,2p) level. The relevant rate constants of the key elementary reactions were calculated by using Rice-Ramsperger- Kassel-Marcus (RRKM) theory at 298 K and 1 atm. All of the energetically favorable pathways were discussed in detail, and theoretical results showed that the oxidation products are dichlorochlordene, hydroxychlrodane, cycloketone and dichloracyl. Combined with available experimental observation, this study can, therefore, help to clarify the atmospheric fate of chlordane.

Funder

Independent Innovation Foundation of Shandong University

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3