Design, Synthesis, Characterization and In Silico Molecular Docking Studies and In Vivo Anti-inflammatory Activity of Pyrazoline Clubbed Thiazolinone Derivatives

Author:

Singh Deepak Kumar1ORCID,Kulshreshtha Mayank2ORCID,Kumar Yogesh2ORCID,Chawla Pooja A.3ORCID,Ved Akash4ORCID,Shukla Karuna Shanker1ORCID

Affiliation:

1. Pharmaceutical Research Laboratory, School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India

2. CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India

3. Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India

4. Department of Pharmacy, Goel Institute of Pharmceutical Sciences, Lucknow, Uttar Pradesh, India

Abstract

The pyrazolines give the reactions of aliphatic derivatives, resembling unsaturated compounds in their behavior towards permanganate and nascent hydrogen. This nucleus has been associated with various biological activities, including inflammatory action. Thiazolinone is a heterocyclic compound that contains both sulfur and nitrogen atom with a carbonyl group in their structure. Thiazolinone and their derivatives have attracted continuing interest because of their various biological activities, such as anti-inflammatory, antimicrobial, anti-proliferative, antiviral, anticonvulsant, etc. The aim of the research was to club pyrazoline nucleus with thiazolinone in order to have a significant anti-inflammatory activity. The synthesized compounds were chemically characterized for the establishment of their chemical structures and to evaluate it as an anti-inflammatory agent. In the present work, eight derivatives of substituted pyrazoline (PT1-PT8) were synthesized by a threestep reaction. The compounds were subjected to spectral analysis by Infrared, Mass, and Nuclear magnetic resonance spectroscopy and elemental analysis data. All the synthesized derivatives were evaluated for their in vivo anti-inflammatory activity. The synthesized derivatives were evaluated for their affinity towards target COX-1 and COX-2, using indomethacin as the reference compound molecular docking visualization through AutoDock Vina. Compounds PT-1, PT-3, PT-4, and PT-8 exhibited significant anti-inflammatory activity at 3rd hour, being 50.7%, 54.3%, 52.3%, and 57%, respectively, closer to that of the standard drug indomethacin (61.9%). From selected anti-inflammatory targets, the synthesized derivatives exhibited better interaction with COX-1 and COX-2 receptor, where indomethacin showed a docking score of -6.5 kJ/mol, compound PT-1 exhibited the highest docking score of -9.1 kJ/mol for COX-1 and compound PT-8 had a docking score of 9.4 kJ/mol for COX-2. It was concluded that synthesized derivatives have more interaction with COX-2 receptors in comparison to the COX-1 receptors because the docking score with COX-2 receptors was very good. It is concluded that the synthesized derivatives (PT-1 to PT-8) are potent COX-2 inhibitors.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3