Distinguishment of Weak Interactions of Hydrogen Atoms Bound to Carbon Atoms: X-Ray Crystal Structural and Hirshfeld Surface Analyses of 2-Hydroxy-7-methoxy-3-(2,4,6-trimethylbenzoyl)naphthalene with the 2-Methoxylated Homologue

Author:

Iida Kikuko1ORCID,Muto Toyokazu1ORCID,Kobayashi Miyuki1ORCID,Iitsuka Hiroaki1ORCID,Li Kun1ORCID,Yonezawa Noriyuki2ORCID,Okamoto Akiko1ORCID

Affiliation:

1. Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan

2. Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan; Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan

Abstract

Abstract: X-ray crystal and Hirshfeld surface analyses of 2-hydroxy-7-methoxy-3-(2,4,6-trimethylbenzoyl)naphthalene and its 2-methoxylated homologue show quantitatively and visually distinct molecular contacts in crystals and minute differences in the weak intermolecular interactions. The title compound has a helical tubular packing, where molecules are piled in a two-folded head-to-tail fashion. The homologue has a tight zigzag molecular string lined up behind each other via nonclassical intermolecular hydrogen bonds between the carbonyl oxygen atom and the hydrogen atom of the naphthalene ring. The dnorm index obtained from the Hirshfeld surface analysis quantitatively demonstrates stronger molecular contacts in the homologue, an ethereal compound, than in the title compound, an alcohol, which is consistent with the higher melting temperature of the former than the latter. Stabilization through the significantly weak intermolecular nonclassical hydrogen bonding interactions in the homologue surpasses the stability imparted by the intramolecular C=O…H–O classical hydrogen bonds in the title compound. The classical hydrogen bond places the six-membered ring in the concave of the title molecule. The hydroxy group opposingly disturbs the molecular aggregation of the title compound, as demonstrated by the distorted H…H interactions covering the molecular surface, owing to the rigid molecular conformation. The position of effective interactions predominate over the strength of the classical/nonclassical hydrogen bonds in the two compounds.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3