Inhibition of Inflammatory Cytokine Secretion by Plant-Derived Compounds Inuviscolide and Tomentosin: The Role of NFκB and STAT1

Author:

Abrham Galya,Dovrat Sara,Bessler Hanna,Grossman Shlomo,Uri Nir,Bergman Margalit

Abstract

The plant Inula viscosa has been shown to possess many important medicinal benefits, including anti-inflammatory, anti-oxidant, anti-bacterial, and anti-fungal activities, but the plant metabolites that mediate these effects and their mechanism of action are poorly understood. In a previous study, we demonstrated a reduced expression of the p65 subunit of nuclear factor kappa B (NFκB) in melanoma cells treated with the purified sesquiterpene lactone compounds, Inuviscolide (Inv) and Tomentosin (Tom), extracted from Inula viscosa leaves. In this study, we tested the invitro effect of these purified compounds on the secretion of pro-inflammatory cytokines from human peripheral blood mononuclear cells (PBMCs) upon stimulation with lipopolysaccharide (LPS) or phorbol myristate acetate (PMA). Their possible mechanism of action was also studied. The results showed that both agents caused decreased production of IL-2, IL-1β, IFNγ, and slightly increased secretion of TNFα, whereas secretion of IL-6 was not affected. The elevated levels of TNFα did not appear to affect the viability of human PBMCs. Western blot analysis revealed a reduction in the protein level of both the transcription factor component p65/RelA of nuclear factor-κB (NFκB) and the signal transducer and activator of transcription 1 (STAT1) through proteosomal degradation. However, no change was observed in the expression level of the nuclear factor-κB component, p50 (NFκB), or the signal transducer and activator of transcription 3 (STAT3). Taken together, our results indicate the possible future use of these agents as an anti-inflammatory treatment in cases where overstimulation of cytokine secretion is the basis for the pathological symptoms.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3