Isolation of Glomerular Podocytes by Cationic Colloidal Silica-coated Ferromagnetic Nanoparticles

Author:

Blutke Andreas

Abstract

Background: Podocyte homeostasis plays a crucial role for the maintenance of physiological glomerular function and podocyte injury is regarded as a major determinant of development and progression of renal disease. Objective: Investigation of podocytes requires appropriate methods for their isolation. Previously reported methods use podocyte specific antibodies or transgenic mice with podocyte specific expression of fluorescent markers for isolation of podocytes by magnetic or fluorescence activated cell sorting. Method: Here, a novel, antibody-free method for isolation of podocyte protein and RNA from mouse glomeruli is described. Preparations of isolated glomeruli were added to a suspension of cationic silica-coated colloidal ferromagnetic nanoparticles. The nanoparticles bound to the negatively charged cell surfaces of podocytes residing on the outer surface of the isolated glomeruli. After enzymatic and mechanical dissociation of glomerular cells, nanoparticle-coated podocytes were isolated in a magnetic field. The method was tested in adult wild-type mice without renal lesions and in mice of two nephropathy models (Growth hormone (GH)-transgenic mice and transgenic mice expressing a dominant negative receptor for the glucose dependent insulinotropic polypeptide, GIPRdn) displaying albuminuria, glomerular hypertrophy and evidence for a reduced negative cell surface charge of podocytes. Results: The isolated cells displayed typical morphological and ultrastructural properties of podocytes. On average, 182,000 ± 37,000 cells were counted in the podocyte isolates harvested from ~10,000-12,000 glomeruli per mouse. On the average, the purity of podocyte isolates of these mice accounted for ~63 ± 18 % and the podocyte isolates displayed high mRNA and protein expression abundances of podocyte markers (nephrin and WT1), whereas the expression of endothelial (Cd31) and mesangial markers (Serpinb7) was significantly decreased in podocyte isolates, as compared to samples of isolated glomeruli. The numbers of cells isolated from GH- transgenic and GIPRdn-transgenic mice were not markedly different from that of wild-type mice. Conclusion: The described method represents an alternative for podocyte isolation, particularly in experiments where podocyte specific antibodies or transgenic animals with podocyte specific expression of fluorescent markers are not applicable.

Publisher

Bentham Science Publishers Ltd.

Subject

Urology,Nephrology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3